Project description:From subcutaneous adipsoe tissue from 2 particpants we performed scRNA-seq on the stromal vascular fraction, snRNA-seq on isolated adipocytes and snRNA-seq on frozen adipose tissue. We performed clustering analysis, differential gene expression analysis and over-representation analysis to decipher the different cell populations detectable with each technique. The SVF fraction was able to show more diverse immune cell populations. Whilst the snRNA-seq frozen adipose tissue showed diverse clusters of adipocytes that was not observable from a snRNA-Seq fraction
Project description:We have identified several nucleotide motifs (caug, cgggag=S2) that promote exosome sorting of miRNA in different cell types including brown adipocytes. In order to identify which proteins might recognize and bind to these motifs, we have performed co-precipitations of proteins binding biotinylated forms of miRNAs containing the aforementioned motifs or none - using streptavidin beads incubated with brown adipocytes cell lysates. We have included two types of controls: negative poly-A control and a scramble miRNA.
Project description:Spliceosomal snRNA are key components of small nuclear ribonucleoprotein particles (snRNPs), the building blocks of the spliceosome. The biogenesis of snRNPs is a complex process involving multiple cellular and subcellular compartments, the details of which are yet to be described. In short, the snRNA is exported to the cytoplasm as 3‘-end extended precursor (pre-snRNA), where it acquires a heptameric Sm ring. The SMN complex which catalyses this step, recruits Sm proteins and assembles them around the pre-snRNA at the single stranded Sm site. After additional modification, the complex is re-imported into the nucleus where the final maturation step occurs. Our modeling suggests that during the cytoplasmic stage of maturation pre-snRNA assumes a compact secondary structure containing Near Sm site Stem (NSS) which is not compattible with the formation of the Sm ring. To validate our in silico predictions we employed selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) on U2 snRNA in vivo, ex vivo and in vitro, and U4 pre-snRNA in vitro. For the in vivo experiment HeLa cells were incubated for 10 min at 37°C with NAI or DMSO to final concentration 200 mM. RNA was isolated using Trizol (Sigma) and 200 µl chloroform and precipitated with ethanol at -20°C overnight. For the ex vivo experiment, RNA was isolated from HeLa cells after Protease K treatment at room temperature for 45 min. After incubation, RNA was isolated using equilibrated phenol/chloroform/isoamyl alcohol buffered by folding buffer (110 mM HEPES pH 8.0, 110 mM KCl, 11 mM MgCl2) and cleaned on a PD-10 column according to the manufacturer’s instructions. Isolated RNA was treated with 100mM NAI or DMSO for 10 min at 37°C. For the in vitro experiment, U2WT and U4 pre-snRNA were transcribed by T7 polymerase followed by DNase I (30 min at 37 °C) and Proteinase K (30 min at 37°C) treatments. U2 snRNA was purified on 30 kDa Amicon columns, folded for 30 min at 37°C in 57 mM MgCl2 and incubated with 100 mM NAI at 37°C for 10 min. DMSO was used as a negative control. U4 pre-snRNA was purified on Superdex 200 Increase 10/300GL, folded for 30 min at 37°C in 60 mM MgCl2 and incubated with 100 mM NAI at 37°C for 10 min. DMSO was used as a negative control. All prepared RNA samples (in vitro, ex vivo, in vivo) were used for reverse transcription with the gene-specific primer 5’-CGTTCCTGGAGGTACTGCAA for U2 snRNA and 5’- AAAAATTCAGTCTCCG for U4 pre-snRNA. We used SHAPE MaP buffer (50 mM Tris-HCl pH 8.0, 75 mM KCl, 10 mM DTT, 0.5 mM dNTP, 6 mM MnCl2) and SuperScript II (Invitrogen). Amplicons for snRNAs were generated using gene-specific forward and reverse primers. Importantly, the primers include Nextera adaptors required for downstream library construction. PCR reaction products were cleaned using Monarch PCR&DNA Clean-up Kits. Remaining Illumina adaptor sequences were added using the PCR MasterMix and index primers provided in the NexteraXT DNA Library Preparation Kit (Illumina) according to the manufacturer’s protocol. Libraries were quantified using Qubit (Invitrogen) and BioAnalyzer (Agilent). Amplicons were sequenced on a NextSeq 500/550 platform using a 150 cycle mid-output kit. All sequencing data was analyzed using the ShapeMapper 2 analysis pipeline1. The ‘—amplicon’ and ‘—primers’ flags were used, along with sequences of gene-specific handles PCR primers, to ensure primer binding sites are excluded from reactivity calculations. Default read-depth thresholds of 5000x were used. Analysis of statistically significant reactivity differences between ex vivo and in vivo-determined SHAPE reactivities was performed using the DeltaSHAPE automated analysis tool and default settings2. 1. Busan, S. & Weeks, K.M. Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA 24, 143-148 (2018). 2. Smola, M.J., Rice, G.M., Busan, S., Siegfried, N.A. & Weeks, K.M. Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc 10, 1643-69 (2015).
Project description:Adipose tissue can recruit catabolic adipocytes which utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA-sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-beige and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-utilizing beige subpopulation is metabolically highly active and utilizes FCs to dissipate energy thus contributing to thermogenesis independent of UCP1. Furthermore, FC-beige adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.
Project description:Adipose tissue can recruit catabolic adipocytes which utilize chemical energy to dissipate heat. This process occurs either by uncoupled respiration through uncoupling protein 1 (UCP1) or by utilizing ATP-dependent futile cycles (FCs). However, it remains unclear how these pathways coexist since both processes rely on the mitochondrial membrane potential. Utilizing single-nucleus RNA-sequencing to deconvolute the heterogeneity of subcutaneous adipose tissue in mice and humans, we identify at least 2 distinct subpopulations of beige adipocytes: FC-beige and UCP1-beige adipocytes. Importantly, we demonstrate that the FC-utilizing beige subpopulation is metabolically highly active and utilizes FCs to dissipate energy thus contributing to thermogenesis independent of UCP1. Furthermore, FC-beige adipocytes are important drivers of systemic energy homeostasis and linked to glucose metabolism and obesity resistance in humans. Taken together, our findings identify a noncanonical thermogenic adipocyte subpopulation, which could be an important regulator of energy homeostasis in mammals.