Project description:High-quality sources of protein for the formulation of feeds of carnivorous fish species such as Atlantic salmon are currently being sought. In an earlier screening trial we evaluated for the first time in Atlantic salmon (Salmo salar) the applicability of air-classified faba bean (Vicia faba) protein concentrate (BPC) inclusions in combination with soy protein concentrate (SPC) and fishmeal (FM) using parr as a model. Based on the results in parr in freshwater, the present study tested the hypothesis that BPC can effectively replace SPC as a dietary protein source in post-smolt Atlantic salmon in seawater. Herein we compare three dietary treatments, including BPC0 (no BPC), BPC20 (20% BPC) and BPC40 (40% BPC). Full details on diet formulation are available in the publication.
Project description:Tenacibaculum finnmarkense is a novel Gram-negative, aerobic bacterial strain causing skin ulcers in Atlantic salmon. This is an emerging pathogen, which may cause serious problems to aquaculture. The study was designed to compare the life stages (smolt and posmolt) and to assess effects of environment (fresh and brackis water) on the course of disease and salmon responses to the pathogen.
Project description:Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of Atlantic salmon smolts treated with nonylphenol compared to control smolts. Nonylphenol treatment was confirmed using physiological assays: nonylphenol-treatment significantly decreased gill Na+,K+-ATPase activity and plasma cortisol and T3 levels.
Project description:Atlantic salmon (Salmo salar) pre-smolt optic tectum, saccus vasculosus and gill tissues were collected over a light:dark (LD, 8:16) cycle, constant light (LL) and constant dark (DD) time series at a four hour resolution Total RNA was extracted, RNA quality was assessed using BIORAD Experion, then submitted to a bespoke clock gene NanoString CodeSet
Project description:There is an increasing drive to replace fish oil (FO) in finfish aquaculture diets with vegetable oils (VO), driven by the short supply of FO derived from wild fish stocks. Little is known of the consequences for fish health after such substitution. The effect of dietary VO on hepatic gene expression was determined in Atlantic salmon (Salmo salar) byg a cDNA microarray analysis. Post-smolt farmed salmon were reared for x weeks on diets where the FO component of the feed was replaced with one of three different VOs - rapeseed (RO), soybean (SO) or linseed (LO). RNA from five fish fed on each diet was extracted. A total of 20 cDNA microarray hybridisations - TRAITS / SGP Atlantic salmon 17k feature cDNA microarray - were performed - 4 diets (three VO + FO control) x 5 individuals - using a common pooled reference control design. Data were obtained from 19 of the 20 hybridisations.
Project description:Black soldier fly larvae meal (BSFL) from Hermetia illucens is a promising alternative protein source in diets for farmed fish. The larvae can efficiently convert low-value organic material into high quality protein in a production cycle with low arable land and freshwater inputs. A few recent studies have shown that BSFL is a suitable protein source for Atlantic salmon (Salmo salar) in smaller controlled experiments. However, industry-relevant field trials conducted under large scale near-commercial conditions over a longer period are lacking. In this study, a feeding trial was performed to evaluate the impact of BSFL on growth performance and health of Atlantic salmon during the grow out phase in seawater, in a commercial site in Vestland county, Norway. A total of 320,000 post-smolt Atlantic salmon were distributed into six duplicate sea cages and fed one of three diets (commercial-like control diet and two test diets partially replacing the protein content of the control diet with 4 % and 8 % defatted BSFL meal) for 21 weeks, until a relevant commercial slaughter size of 4.5-5.0 kg was reached. Health parameters were assessed including histology of the distal intestine (DI), in addition to DI microbiota identification (by 16s rRNA-seq) and salmon RNA-seq of DI and head kidney (HK). The results showed that the inclusion of BSFL meal supported growth performance and had no adverse effect on gut health. The beta diversity of the distal intestine microbiota and the relative abundance of families Lactobacillaceae and the chitinolytic Bacillaceae increased in the fish fed the BSFL diets. Additionally, no histopathological changes were attributable to BSFL meal intake. Results from RNA-seq in DI revealed that BSFL inclusion modulates metabolic processes associated with lipids, the response to estrogens, the activity of immune receptors (to chemokines), phagocytosis and extracellular vesicles. Based on these results, black soldier fly larvae meal is a suitable alternative protein ingredient in inclusions of up to at least 8 % for Atlantic salmon under industrial fish farming conditions.
2024-08-16 | GSE241320 | GEO
Project description:Atlantic salmon recirculating aquaculture system (RAS) hatchery bacterial transfer from eggs to post-smolt (Rookwood Tasmania hatchery -smolt, post-smolt samples)
| PRJNA1026342 | ENA
Project description:Atlantic salmon recirculating aquaculture system (RAS) hatchery bacterial transfer from eggs to post-smolt (SALTAS Tasmania hatchery -smolt, post-smolt samples),
Project description:To identify genes involved in the developmental process of Atlantic salmon smoltification, gene expression was compared between smolt and parr in tissues involved in osmoregulation (gill), metabolism (liver), imprinting (olfactory rosettes) and neuroendocrine control (hypothalamus and pituitary). Tissue samples were harvested from laboratory-reared parr and smolts on the same date. Smolts were distinguished from parr by size and appearance; developmental status was confirmed by physiological assays.
2012-08-20 | GSE33711 | GEO
Project description:Atlantic salmon gut microbiome