Project description:Type I interferon (IFN) is the first line of defense against virus infection. By using both in vivo and in vitro influenza infection models, we found that type I IFN-κ, limited the replication of influenza viruses by stimulating a IFNAR-MAPK-cFos-CHD6 axis. Similarly, Zika virus (ZIKV) was also highly sensitive to IFN-κ-mediated suppression. With an IAV infected mouse model, we found that IFN-κ was the earliest responding type I interferon among all known members in mice after H9N2 infection, a low-pathogenic Avian Influenza, whereas this early induction did not occur upon highly pathogenic H7N9 infection. IFN-κ can efficiently contain both low- and high-pathogenic influenza replication in cultured human lung cells, and CHD6 was the major effector responsive molecule for IFN-κ, but not for IFN-α/β. Furthermore, we discovered that both IFNAR1 and IFNAR2 subunits of type I interferon receptor and their downstream axis of p38-cFos are engaged in IFN-κ signaling cascade to acti vate CHD6, which didn`t require STAT1 activity. In addition, we showed that the pre-treatment with IFN-κ before IAV challenge protected mice from high mortality. Altogether, our study identified an IFN-κ-specific pathway that suppressed influenza A virus in vitro and in vivo. Thus, IFN-κ may have potential as a new prevention and treatment agents against emerging viruses
Project description:Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the host response it elicits. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detailed characterization of the host response following infection. To this end, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/1/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003) or H1N1 (A/Mexico/4482/2009) viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and H1N1 early in infection, but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7 and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased cytokine response, decreased lipid metabolism and decreased coagulation signaling. This three-pronged signature has previously been observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza strains.
Project description:Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the host response it elicits. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detailed characterization of the host response following infection. To this end, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/1/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003) or H1N1 (A/Mexico/4482/2009) viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and H1N1 early in infection, but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7 and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased cytokine response, decreased lipid metabolism and decreased coagulation signaling. This three-pronged signature has previously been observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza strains. Groups of 6- to 8-week-old BALB/c mice were infected with either A/Anhui/01/2013 (H7N9), A/Netherlands/219/2003 (H7N7), A/Vietnam/1203/2004 (H5N1), or pandemic H1N1 human virus, A/Mexico/4482/2007 (H1N1). Infections were done at 10^5 PFU or time-matched mock infected. Time points were 1, 3 and 5 d.p.i. There were 4-5 infected and 3 mock infected animals/time point. Lung samples were collected for virus load and transcriptional analysis. Weight loss and animal survival were also monitored.
Project description:The purpose is to obtain samples for mRNA, miRNA, proteomics, lipidomics, metabolomics, and histopathology analysis in human Calu-3 cells infected with WT A/Anhui/1/2013 (H7N9; 'AH1'), and AH - NS1-103F/106M. Human Calu-3 cells were seeded at 1 x 10^6 cells per well on 6 well plates 2 days before infection. Prior to infection, washed cells 2 times with PBS, and then infected with a multiplicity of infection of 1. Infected samples were collected in quintuplet; time-matched mocks were collected in quintuplet in parallel with infected samples. Time points: 7 and 12 h post-infection
Project description:The purpose is to obtain samples for mRNA, miRNA, proteomics, lipidomics, metabolomics, and histopathology analysis in human Calu-3 cells infected with WT A/Anhui/1/2013 (H7N9; 'AH1'), AH - NS1-103F/106M, and AH1 - 691 (ferret adapted virus). Human Calu-3 cells were seeded at 1 x 10^6 cells per well on 6 well plates 2 days before infection. Prior to infection, washed cells 2 times with PBS, and then infected with a multiplicity of infection of 1. Infected samples were collected in quintuplet; time-matched mocks were collected in quintuplet in parallel with infected samples. Time points: 0, 7, 12 and 24 h post-infection
Project description:To explore the overall circRNAs involved in growth and development of Arabidopsis thaliana across the lifespan, we deeply sequenced samples of whole plants from different developmental stages (cotyledons emergence, rosette leavesï¹¥1 mm, rosette growth complete, first flower open, flourishing florescence, first silique shattered, senescence). The total RNA was purified by rRNA-depletion and linear RNA removal with RNAseR, and sequenced by the Illumina HiSeq2500 platform. We obtained 31 Gb raw data and identified 1217 circRNAs with expression quantity. We annotated these circRNAs and predicted their targeted microRNA. The circRNAs involved in growth and development of Arabidopsis thaliana across lifespan were identified and analyzed using the Illumina HiSeq2500 platform.