Project description:The present study aimed to identify the persistent molecular changes occurring in Atlantic Salmon salmon (Salmo salar) eggs after 24h exposure to high concentrations (5000 mg/L) of road salt at fertilization.
Project description:Background: Commercial Atlantic salmon is fed diets with high fat levels to promote fast and cost-effective growth. To avoid negative impact of obesity, food additives that stimulate fat metabolism and immune function are of high interest. TTA, tetradecylthioacetic acid, is a synthetic fatty acid that stimulates mitochondrial β -oxidation most likely by activation of peroxysome proliferator-activated receptors (PPARs). PPARs are important transcription factors regulating multiple functions including fat metabolism and immune responses. Atlantic salmon experiments have shown that TTA supplemented diets significantly reduce mortality during natural outbreaks of viral diseases, suggesting a modulatory role of the immune system. Results: To gain new insights into TTA effects on the Atlantic salmon immune system, a factorial, high-throughput microarray experiment was conducted using a 44K oligo nucleotide salmon microarray SIQ2.0 and the Atlantic salmon macrophage-like cell line ASK. The experiment was used to determine the transcriptional effects of TTA, the effects of TTA in poly(I:C) elicited cells and the effects of pretreating the cells with TTA. The expression patterns revealed that a large proportion of genes regulated by TTA were related to lipid metabolism and increased mitochondrial β -oxidation. In addition we found that for a subset of genes TTA antagonized the transcriptional effects of poly(I:C). This, together with the results from qRT-PCR showing an increased transcription of anti-inflammatory IL10 by TTA, indicates anti-inflammatory effects. Conclusions: We demonstrate that TTA has significant effects on macrophage-like salmon cells that are challenged by the artificial dsRNA poly(I:C). The immune stimulatory effect of TTA in macrophages involves increased lipid metabolism and suppressed inflammatory status. Thus, suggesting that TTA directs the macrophage-like cells towards alternative, anti-inflammatory, activation. This has positive implications for TTA as a feed additive.
Project description:Norway is the largest producer and exporter of farmed Atlantic salmon (Salmo salar) worldwide. Skin disorders correlated with bacterial infections represent an important challenge for fish farmers due to the economic losses caused. Little is known about this topic, thus studying the skin-mucus of Salmo salar and its bacterial community depict a step forward in understanding fish welfare in aquaculture. In this study, we used label free quantitative mass spectrometry to investigate the skin-mucus proteins associated with both Atlantic salmon and bacteria. In addition, the microbial temporal proteome dynamics during 9 days of mucus incubation with sterilized seawater was investigated, in order to evaluate their capacity to utilize mucus components for growth in this environment.
Project description:Atlantic salmon (Salmo salar L.) is an environmentally and economically important organism and its gene content is reasonably well characterized. From a transcriptional standpoint, it is important to characterize the normal changes in gene expression over the course of early development, from fertilization through to the parr stage.S. salar samples were taken at 17 time points from 2 to 89 days post fertilization. Total RNA was extracted and cRNA was synthesized and hybridized to a new 44K oligo salmonid microarray platform. Quantified results were subjected to preliminary data analysis and submitted to NCBI’s Gene Expression Omnibus. Throughout the entire period of development, several thousand genes were found to be differentially regulated. This work represents the trancriptional characterization of a very large geneset that will be extremely valuable in further examination of the transcriptional changes in Atlantic salmon during the first few months of development. The expression profiles can help to annotate salmon genes in addition to being used as references against any number of experimental variables that developing salmonids might be subjected to.
Project description:This study was performed to investigate assess the impacts of CO and/or CM containing diets on Atlantic salmon hepatic gene expression in order to identify candidate molecular biomarkers of responses to camelina-containing diets. Atlantic salmon were fed diets with complete or partial replacement of FO and/or FM with camelina oil (CO) and/or camelina meal (CM) in a 16-week trial (Control diet: FO; Test diet: 100% FO replacement with CO, with solvent-extracted FM and inclusion of 10% CM (100COSEFM10CM). A 44K microarray experiment identified liver transcripts that responded to 100COSEFM10CM (associated with reduced growth) compared to FO controls at week 16.
Project description:Study revealed new information about molecular functions of the vgll3, akap11 and six6 genes associated with age-at-maturity in Atlantic salmon
Project description:This study investigates host-specific gene expression of the Pacific salmon lice, Lepeophtheirus salmonis oncorhynchii, while parasitizing a resistant host (Coho salmon), two susceptible hosts (Atlantic salmon, Sockeye salmon), and a population with-held hosts (starved), over 48 hrs.