Project description:In this study, isobaric tags for relative and absolute quantification (ITRAQ) and Q Exactive mass spectrometer were used for non-targeted proteomic profiling of forearm arteries and veins in patients with chronic kidney disease stage 5 (with or without diabetes mellitus, obtained from arteriovenous fistula surgery) and healthy controls (obtained from patients with forearm trauma). Protein identifications were acquired against the Uniport Human database. As a result, 497609 spectra were obtained and 3244 proteins were identified with 96525 matched peptides.
Project description:Epidemiological studies indicate that adverse intrauterine and postnatal environment has a long-lasting role in chronic kidney disease (CKD) development. Epigenetic information can represent a plausible carrier for mediating this "programming" effect. Here we demonstrate that genome-wide cytosine methylation patterns of healthy and CKD tubule samples obtained from patients show significant differences. We rarely observed differentially methylated regions (DMR) on promoters. Histone modification-based kidney specific genome-wide gene regulatory region annotation maps (promoters, enhancers, transcribed and repressed regions) were generated. DMRs mostly overlapped with putative enhancer regions and were enriched in consensus binding sequences for important renal transcription factors, indicating their importance in gene expression regulation. A core set of genes, including transforming growth factors and collagens, showed cytosine methylation changes correlating with downstream transcript levels. Our report raises the possibility that epigenetic dysregulation plays a role in CKD development via influencing core profibrotic pathways. HG18_HELP array We used custom-commercial array to detail the differences of methylation regions of human tubule epithelial cells between chronic kidney disease and normal. We sought to decrease the cell type heterogeneity of kidney tissues to increase the resolution of methylation profiles. To that end, microdissected human kidney tissue from both chronic kidney disease patient and normal are used for the HELP-assay (HpaII tiny fragment Enrichment by Ligation-mediated PCR) and hybridization on Roche NimbleGen microarrays.
Project description:Epidemiological studies indicate that adverse intrauterine and postnatal environment has a long-lasting role in chronic kidney disease (CKD) development. Epigenetic information can represent a plausible carrier for mediating this programming effect. Here we demonstrate that genome-wide cytosine methylation patterns of healthy and CKD tubule samples obtained from patients show significant differences. Cytosine methylation changes showed high concordance (98%) with a large (n=87) replication dataset. We rarely observed differentially methylated regions (DMR) on promoters. Histone modification-based kidney specific genome-wide gene regulatory region annotation maps (promoters, enhancers, transcribed and repressed regions) were generated. DMRs mostly overlapped with putative enhancer regions and were enriched in consensus binding sequences for important renal transcription factors, indicating their importance in gene expression regulation. A core set of genes, including transforming growth factors and collagens, showed cytosine methylation changes correlating with downstream transcript levels. Our report raises the possibility that epigenetic dysregulation plays a role in CKD development via influencing core profibrotic pathways. We used microarrays to detail the differences of gene expression of human tubule epithelial cells between chronic kidney disease and normal. We sought to decrease the cell type heterogeneity of kidney tissues to increase the resolution of expression profiles. To that end, microdissected human kidney tissue from both chronic kidney disease patient and normal are used for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Each senescent FB model exhibited different characteristics. Besides the upregulated expression of natural senescence features, FB-UVB and FB-ATV expressed high levels of senescence-related genes including SASP, and FB-P30 had the greatest similarity with FB-E. However, D-galactose-stimulated FB did not clearly present aging characteristics. It provides references for choosing senescent FB model in studying aging and related skin disease.