Project description:Serine-threonine kinase receptor-associated protein (STRAP) is upregulated in breast, colorectal and lung cancers, promoting their growth. We identify the upregulation of STRAP in hepatocellular carcinomas. Elevated STRAP endows tumor cells with growth advantage by reprograming a variety of metabolic processes and signaling pathways critical for hepatocellular carcinoma progression. Especially, enhanced Wnt/β-catenin signaling is likely to be a major effector of its tumor-promoting role.
Project description:CTNNB1 is the most frequently mutated gene in hepatocellular carcinoma (HCC). However, its clinical relevance remains controversial. We determined an evolutionarily conserved β-catenin signature by comparative analysis of gene expression data from human HCC (GSE43619) and a mouse model.
Project description:CTNNB1 is the most frequently mutated gene in hepatocellular carcinoma (HCC). However, its clinical relevance remains controversial. We determined an evolutionarily conserved β-catenin signature by comparative analysis of gene expression data from human HCC and a mouse model (GSE43628). We generated gene expression data from the tumors of 88 HCC patients who underwent surgical resection as the primary treatment. We used these gene expression data to develop a new prognostification model for prognosis of HCC after surgery. We generated gene expression data from the tumors of 88 HCC patients who underwent surgical resection as the primary treatment.
Project description:CTNNB1 is the most frequently mutated gene in hepatocellular carcinoma (HCC). However, its clinical relevance remains controversial. We determined an evolutionarily conserved β-catenin signature by comparative analysis of gene expression data from human HCC and a mouse model (GSE43628). We generated gene expression data from the tumors of 88 HCC patients who underwent surgical resection as the primary treatment. We used these gene expression data to develop a new prognostification model for prognosis of HCC after surgery.
Project description:Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. β-catenin is widely thought to be a major oncogene in HCC based on the frequency of mutations associated with aberrant Wnt signaling in HCC patients. Challenging this model, our data reveal that β-catenin nuclear accumulation is restricted to the late stage of the disease. Until then, β-catenin is primarily located at the plasma membrane in complex with multiple cadherin family members where it drives tumor cell survival by enhancing the signaling of growth factor receptors such as EGFR. Therefore, our study reveals the evolving nature of β-catenin in HCC to establish it as a compound tumor promoter during the progression of the disease.