Project description:In vitro studies revealed that AEG-1 is palmitoylated at cysteine at a.a. 75 position. In order to check how palmitoylation regulates AEG-1 function in vivo we generated a knockin moue using CRISPR/Cas9 taking in which cysteine 75 was mutated to serine (AEG-1-C75S). Hepatocytes were isolated from AEG-1-WT and AEG-1C75S littermates, total RNA was isolated and RNA-sequencing was performed.
Project description:Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT). The liver consists of 3 zones, periportal, midlobular and pericentral, and zone-specific dysregulated gene expression impairs metabolic homeostasis in the liver, contributing to MASH and HCC. Here, to elucidate how palmitoylation influences AEG-1-mediated gene regulation in regards to hepatic zonation, we performed spatial transcriptomics (ST) in the livers of AEG-1-WT and AEG-1-C75S littermates.
Project description:Amyloid-beta (Aβ) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we reveal that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborate that SELENOK deficiency inhibits microglial Aβ phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aβ phagocytosis. CD36 palmitoylation is reduced in the brains of AD patients and mice. Se supplementation promotes SELENOK expression and CD36 palmitoylation, enhancing microglial Aβ phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aβ pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.