Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.
Project description:Microbial biofilms are omnipresent and implicated in a wide spectrum of areas ranging from bioremediation, food production and biomedical applications. To date little is understood about how biofilm communities develop and function on a molecular level, due to the complexity of these biological systems. Here we ap-ply a meta-proteomics approach to investigate the mechanism driving biofilm formation in a microbial model consortium of four bacterial soil isolates of Steno-trophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paeni-bacillus amylolyticus. The protein abundances between community and the single species biofilms were compared to describe how different metabolic pathways were influenced by inter-species interactions. Our results indicate that community development is dependent on interactions between community members facilitat-ing surface attachment and cross-feeding on specific amino acids. Opposite regu-lation patterns of fermentation and nitrogen pathways in Paenibacillus amylolyticus and Xanthomonas retroflexus may, however, also indicate that competition for lim-ited resources affects community development. Overall our results demonstrate the multitude of pathways characterizing biofilm formation in mixed communities. In order to obtain full taxonomic resolution between closely related species and empower correct protein quantification, we developed a novel pipeline for removing peptide sequences shared between community members from the ref-erence proteomes used for spectral database searches. This pipeline can readily be applied to other microbial communities.
Project description:Microbial decomposition of soil organic carbon (SOC) in Arctic permafrost is one of the most important, but poorly understood, factors in determining the greenhouse gas feedback of tundra ecosystems to climate. Here, we examine changes in the structure of microbial communities in an anoxic incubation experiment at either –2 or 8 °C for up to 122 days using both an organic and a mineral soil collected from the Barrow Environmental Observatory in northern Alaska, USA. Soils were characterized for SOC and geochemistry, and GeoChips 5.0 were used to determine microbial community structure and functional genes associated with C availability and Fe(III) reduction.
Project description:Multispecies biofilms are the predominant form of bacterial growth in natural and human-associated environments. Although the pathways involved in monospecies biofilm have been well characterized, less is known about the metabolic pathways and emergent traits of a multispecies biofilm community. Here, we performed a transcriptome survey of the developmental stages of a 3-species biofilm community and combined it with quantitative imaging and growth experiments. We report the remodelling of central metabolism of two of the three species in this community. Specifically, we observed an increase in the expression of genes associated with glycolysis and pentose phosphate pathways in K. pneumoniae. Similarly, a decrease in the expression of the same pathways in P. protegens was observed along with an increase in expression of glyoxalate cycle genes when grown as a mixed species biofilm, suggesting reorganisation of metabolic pathways and metabolite sharing for the community biofilms. To test the possibility of cross-feeding for the community, planktonic growth experiments revealed that both the Pseudomonads grew well in TCA cycle intermediates, while K. pneumoniae grew poorly when given those carbon sources. Despite this poor growth in mono-culture, K. pneumoniae was still the dominant species in mixed species biofilms cultivated in TCA intermediates as the sole source of carbon. The biofilm growth data, combined with the transcriptomics data, suggests there is reorganisation of metabolism for the community members and may allow for cross-feeding that allows K. pneumoniae to dominate the community. We also demonstrated that sdsA1 of P. aeruginosa was induced upon exposure to the surfactant SDS and that this gene was essential in protecting mono and mixed species biofilms from surfactant stress. This also suggests that the community members can share defence mechanisms. Overall, this study describes a comprehensive transcriptomics level investigation of shared resources, metabolites and stress defence that may underpin the emergent properties of mixed species biofilm communities.
Project description:we report that succinate, a metabolite abundantly produced by the dysbiotic gut microbiota, induces in vitro biofilm formation of C. difficile strains. We characterized the morphology and spatial composition of succinate- induced biofilms, and compared to non-induced or deoxycholate-induced biofilms, biofilms induced by succinate are significantly thicker, structurally more complex, and poorer in proteins and exopolysaccharides (EPS).