Project description:To elucidate the effect of menin on the differentiation of CD8 T cell, the gene expression were measured in WT and Menin KO CD8 T cells.
Project description:The goal of this study was to examine differences in gene expression of tumor specific CD8 T cells in an in vivo tumor mouse model after inhibition of galectin-3 protein expression by genetic knockout. Galectin-3 is thought to modulate CD8 T cell response by cross-linking cell surface glycoproteins Galectin-3 is a 31 kD carbohydrate-binding lectin that is over-expressed by many human malignancies. It also modulates T cell responses through a diverse array of mechanisms including induction of apoptosis, TCR cross linking in CD8+ T cells, and T cell receptor (TCR) down regulation in CD4+ T cells. We found that patients responding to a granulocyte-macrophage colony-stimulating factor (GM-CSF) secreting allogeneic pancreatic tumor vaccine developed post immunization antibody responses to galectin-3 on a proteomic screen. We used the HER-2/neu (neu-N) transgenic mouse model to study galectin-3 binding on adoptively transferred high avidity neu-specific CD8+ T cells derived from TCR transgenic mice. Here, we show that galectin-3 binds preferentially to activated antigen-committed CD8+ T cells only in the tumor microenvironment (TME). Galectin-3 deficient mice exhibit improved CD8+ T cell effector function and increased expression of several inflammatory genes when compared with wild type (WT) mice. We also show that galectin-3 binds to LAG-3, and LAG-3 expression is necessary for galectin-3 mediated suppression of CD8+ T cells in vitro. Lastly, galectin-3 deficient mice have significantly elevated levels of circulating plasmacytoid dendritic cells (pDCs), which are superior to conventional dendritic cells (cDCs) in activating CD8+ T cells. Binding of galectin-3 to cell-surface glycoproteins on immune cells suppresses a pro-inflammatory immune response. Thus, inhibiting galectin-3 in conjunction with CD8+ T cell directed immunotherapies should enhance the tumor specific immune response. 3 different experimental groups were studied. Galectin-3 WT CD8 T cells adoptively transferred into Galectin-3 WT mice, galectin-3 WT CD8 T cells transferred into galectin-3 KO mice, and finally galectin-3 KO CD8 T cells transferred into galectin-3 KO mice. Galectin-3 WT CD8 T cells transferred into Galectin-3 WT mice were used as the reference group. Four biological replicates were submitted for each group, and adoptively transfered CD8 T cells were isolated 5 days post-adoptive transfer into tumor-bearing mice treated with a whole cell GM-CSF secreting vaccine. Cells were purified by cell sorting on the Thy1.2 surface marker.
Project description:Menin binding pattern in WT and Psip1 KO MEFs Menin occupancy is studied over Hox genes Menin ChIP from WT and Psip1 KO MEFs ChIP-chip
Project description:B7S1 negatively regulates T cells and its expression correlates with poor prognosis of cancer patients. In order to understand how B7S1 signaling contributes to dysfunction of CD8+ T cell in the TME, we conducted transcriptional analysis of OVA-specific CD8+ TILs and different TIL subsets from E.G7-bearing WT and B7S1 KO mice (Day 21).
Project description:To elucidate the effect of Utx, histone demethylase, on CD8 Tcell diferentiation, The gene expression were measured in WT and Utx KO CD8 T cells.
Project description:Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies. Genome-wide mapping of H3K4me3 and microarray gene expression profiling in TC-1 wild-type (WT) mESCs, menin-null (Men1-ko) mESCs (3.2N), pancreatic islet-like endocrine cells (PILECs) derived from WT mESCs, and PILECs derived from Men1-ko mESCs.