Project description:To investigate the effect of soy peptides on gut microial composition during juvenile social isolation, group-house (GH) and social isolation (SI) mice were fed a diet consisting of soy peptides or a control diet for 4 weeks post-weaning. We then performed microbial community analysis using data obtained from bacterial 16S rRNA gene sequencing in the fecal samples of 4 mice groups (control diet-fed GH, soy peptide-diet fed GH, control diet-fed SI, and soy peptide-diet fed SI mice).
Project description:The lateral habenula (LHb) is an essential hub brain region modulating the monoamine system such as dopamine, serotonin. Hyperactivity of LHb has implications for psychiatric disorders such as depression, anxiety, and schizophrenia, which are commonly associated with social dysfunction. However, the role of LHb in social behavior has remained elusive. Here, we find that experiencing acute social isolation affects synaptic function in LHb and social behavior. After acute social isolation, long-term depression (LTD) in LHb is impaired and rescued by activating the 5-HT4 receptor (5-HT4R). Indeed, Htr4 expression in LHb is up-regulated following acute social isolation. Finally, acute social isolation enhances the social preference for familiars such as housing-mates to stranger conspecifics. Consistent with electrophysiological results, pharmacological activation of 5-HT4R in LHb restored innate social preference. These results suggest that acute social isolation influences social decisions with 5-HT4R-dependent synaptic modification in LHb.
Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:Social isolation poses a severe mental and physiological burden on humans. Most animal models that investigate this effect are based on prolonged isolation, which does not mimic the milder conditions experienced by people in the real world. Here we show that in the medial amygdala, a brain structure that is crucial for social memory, acute social isolation causes social memory loss and significant changes in specific mRNAs and proteins.
Project description:Gene expression profiling was carried out on peripheral blood leukocytes from 14 healthy older adults. The primary research question is whether gene expression differs in individuals experiencing chronically high levels of social isolation (by UCLA Loneliness Scale) vs chronically low levels of social isolation. Experiment Overall Design: Gene expression profiling was carried out on peripheral blood leukocytes from 14 healthy older adults. The primary research question is whether gene expression differs in individuals experiencing chronically high levels of social isolation (by UCLA Loneliness Scale) vs chronically low levels of social isolation.
Project description:Gene expression profiling was carried out on peripheral blood leukocytes from 14 healthy older adults. The primary research question is whether gene expression differs in individuals experiencing chronically high levels of social isolation (by UCLA Loneliness Scale) vs chronically low levels of social isolation. Keywords: Risk prediction
Project description:To explore the molecular mechanism underlying social isolation and resocialization, we performed RNA-seq on mPFC samples from the ~7-week-old control and social isolation mice. We identified 1265 differentially expressed genes (DEGs) that were enriched in 4 pathways: cognitive behavior, myelin development, synaptic development, and ion channels.
Project description:Social experience influences multiple behaviors of many animal species, including aggression. Social isolation often increases aggressiveness. To investigater the molecular basis of social influences on aggressiveness, we performed comparative gene expression profiling on heads from 6-day-old, single-housed, more aggressive and group-housed, less aggressive male flies. Keywords: social experience
Project description:Previous research has linked perceived social isolation (loneliness) to reduced antiviral immunity, but the immunologic effects of the objective social isolation imposed by pandemic “shelter in place” (SIP) policies is unknown. We assessed the immunologic impact of SIP by relocating 21 adult male rhesus macaques from 2000 sq-m field cage communities of 70-132 other macaques to 2 wks of individual housing in indoor shelters. SIP was associated with down-regulation of Type I interferon (IFN) antiviral gene expression. This effect emerged within the first 48 hrs of SIP, persisted for at least 2 wks, and abated within 4 wks of return to social housing. A subsequent round of SIP in the presence of a novel juvenile macaque abrogated this effect. These results identify a significant adverse effect of SIP social isolation on antiviral immune regulation in circulating immune cells and they suggest a potential behavioral strategy for ameliorating such effects by promoting pro-social engagement during SIP.