Project description:To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. Proteomic and transcriptomic profiling of Arabidopsis Col and RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2) double mutation in response to iron deficiency were conducted. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited.
Project description:Purpose: plants exposed to multiple simultaneous adverse growth conditions trigger molecular responses that differ from the sum of those to individual stressors. Copper and iron are fundamental elements required for proper photosynthesis, energy production, DNA metabolism and hormone sensing, among all. Therefore, copper and iron deprivation limits plant yield. In natural environments, simultaneous deficiency to copper and iron can occur. As part of a multiple high-throughput study to identify combinatorial responses to both copper and iron deficiency, RNA-Seq profiling of Arabidopsis thaliana rosette leaves exposed to copper and/or iron deficiencies have been conducted. Methods: RNA-Seq libraries were prepared from total RNA of whole rosettes of 20-d-old plants treated for control conditions, copper deficiency, iron deficiency or simultaneous deficiency to both copper and iron for 10 d and sequenced using Illumina protocols. 2 independent plants were RNA-Seq-sequenced per treatment. Adaptor sequences were removed with Trimmomatic and the resulting reads mapped to the Arabidopsis genome (Araport11) with Tophat 2.1.1. Read counts and differential expression analysis were conducted with Cufflinks/Cuffdiff. Results: for RNA-Seq analysis a Tophat/Cuffdiff pipeline was designed. Each sample provided app. 9 million reads. After applying a cut-off of absolute log2(FC) ≥ 1 to controls and a FDR ≤ 0.05, copper deficiency led to 83 differentially expressed genes, followed by 1708 during iron deficiency, while the combinatorial treatment altered 2056 transcripts. Comparison of differential expressed genes among treatments indicated that double deficiency led to app. 45% rewiring of all detected transcriptional changes. Conclusions: our data support that combinatorial copper and iron deficiency treatments in plants triggers transcriptional responses that differ from those to single deficiencies.
Project description:Arabidopsis thaliana Col-0 plants and three other genotypes (ARR1 overexpressor, arr1-1 knockout, overexpressor of ARR1-SRDX fusion protein) were grown in liquid media (1/2 MS, 1 g/L sucrose, 0.5 g/L MES, pH 5.7) in a Percival AR-66L growth chamber at 24 oC, 16:8 h day:night cycle, and 100 µE light intensity until growth stage 1.0. Plants were then treated with 5 µM 6-Benzyladenine for 0, 15, and 120 min, harvested and frozen in liquid nitrogen for RNA extraction and subsequent processing for microarray hybridization.
Project description:In order to identify differentially expressed genes in developing seeds of Arabidopsis thaliana three different stages of seed development were analysed (9-10, 10-11 and 12-13 days after flower opening) for two Arabidopsis thaliana accessions, Col-0 and C24. For each stage and accession three biological replicates were analysed.
Project description:In order to identify differentially expressed genes in developing seeds of Arabidopsis thaliana three different stages of seed development were analysed (9-10, 10-11 and 12-13 days after flower opening) for two Arabidopsis thaliana accessions, Col-0 and C24. For each stage and accession three biological replicates were analysed.
Project description:Purpose: plants exposed to multiple simultaneous adverse growth conditions trigger molecular responses that differ from the sum of those to individual stressors. Copper and iron are fundamental elements required for proper photosynthesis, energy production, DNA metabolism and hormone sensing, among all. Therefore, copper and iron deprivation limits plant yield. In natural environments, simultaneous deficiency to copper and iron can occur. As part of a multiple high-throughput study to identify combinatorial responses to both copper and iron deficiency, proteomic profiling of Arabidopsis thaliana rosette leaves exposed to copper and/or iron deficiencies have been conducted.
Project description:Iron and copper are important environmental nutrients for plant growth. However, the molecular mechanisms of both iron and copper signaling that integrate the two pathways remain poorly understood. The Arabidopsis thaliana high affinity copper transporter COPT5, is a tonoplast localized permease involved in copper remobilization. Here, a global expression microarray analysis of the copt5 mutant points out the induction of iron deficiency responses, including NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 4 (NRAMP4), a tonoplast-localized iron transporter. The copper requirement in iron perception and uptake from the media becomes more evident in the double nramp3nramp4 mutant, unable to remobilize iron from vacuoles, that is highly sensitive to copper deficiency. Furthermore, COPT5 expression is altered under iron deficiency and the copt5 mutant is sensitive to iron deficiency and is unable to perceive iron in the media under copper deficiency. Noteworthy, iron deficiency post-transcriptionally restraints the copper-dependent superoxide dismutase protein levels and the subsequent activity. As a consequence of its increased iron deficiency responses, the copt5 mutant present lower levels of both copper- and iron-dependent superoxide dismutase activities. Moreover, the copt5 mutant mobilizes faster its iron storage pools and presents higher levels of iron in cotyledons and seeds. These results underline the importance of internal metal pools in the understanding of copper and iron deficiency responses and their crosstalk that are critical for governing proper plant development in response to combined metal scarcities in soils.
Project description:RNAseq transcriptome of anthers of Arabidopsis thaliana Columbia-0 grown under control (1/2 Hoagland) and Fe deficiency conditions.