Project description:To investigate the role of Flk1 in pulmonary arterial hypertension, we generated mice lacking Flk1 specifically in vascular endothelial cells. We exposed these mice to hypoxia and collected Flk1-KO endothelial cells by FACS for RNA-seq.
Project description:Arterial pulmonary hypertension is a rare disease, with little knowledge regarding its etiology, and high mortality. Development of right and later on also left ventricular heart insufficiency, secondary to pulmonary hypertension, is a negative predictive factor. Genetic and molecular processes underlying left heart ventricle remodeling over the course of pulmonary hypertension remain unknown. In particular, there is no knowledge regarding the mechanisms of left heart ventricle atrophy which was completely avoided by researchers until recently.The aim of this study was to assess changes in protein abundance in left and right heart ventricle free wall of rats in monocrotaline model of PAH.
Project description:miRNAs have been proved to participate in the regulation of proliferation and apoptosis in many diseases,we consider there may be associations between miRNAs and development of pulmonary arterial hypertension (PAH). Previous studies have revealed that several miRNAs participated in the regulation of the development of PAH. In this study, we investigated the miRNA differential expression spectrum in pulmonary arterial hypertension patients.
Project description:Although multiple gene and protein expression have been extensively profiled in human pulmonary arterial hypertension (PAH), the mechanism for the development and progression of pulmonary hypertension remains elusive. Analysis of the global metabolomic heterogeneity within the pulmonary vascular system leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to increased ATP synthesis for the vascular remodeling process in severe pulmonary hypertension. These identified metabolites may serve as potential biomarkers for the diagnosis of severe PAH. By profiling metabolomic alterations of the PAH lung, we reveal new pathogenic mechanisms of PAH in its later stage, which may differ from the earlier stage of PAH, opening an avenue of exploration for therapeutics that target metabolic pathway alterations in the progression of PAH. Global profiles were determined in human lung tissue and compared across 11 normal and 12 severe pulmonary arterial hypertension patients. Using a combination of microarray and high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung.
Project description:Pulmonary arterial hypertension (PAH) is the best characterized and most studied type of pulmonary hypertension, classified as Group I according to the international guidelines, and hemodinamically defined as pre-capillary pulmonary hypertension. Our analysis was focused on the role of the osteopontin gene in the transcriptional profile of PAH. We used microarray to identifiy the gene expression profiles in patients with PAH and in normal controls.
Project description:Despite recent improvements in management of idiopathic pulmonary arterial hypertension, mortality remains high. Understanding the alterations in the transcriptome–phenotype of the key lung cells involved could provide insight into the drivers of pathogenesis. In this study, we examined differential gene expression of cell types implicated in idiopathic pulmonary arterial hypertension from lung explants of patients with idiopathic pulmonary arterial hypertension compared to control lungs. After tissue digestion, we analyzed all cells from three idiopathic pulmonary arterial hypertension and six control lungs using droplet-based single cell RNA-sequencing. After dimensional reduction by t-stochastic neighbor embedding, we compared the transcriptomes of endothelial cells, pericyte/smooth muscle cells, fibroblasts, and macrophage clusters, examining differential gene expression and pathways implicated by analysis of Gene Ontology Enrichment. We found that endothelial cells and pericyte/smooth muscle cells had the most differentially expressed gene profile compared to other cell types. Top differentially upregulated genes in endothelial cells included novel genes: ROBO4, APCDD1, NDST1, MMRN2, NOTCH4, and DOCK6, as well as previously reported genes: ENG, ORAI2, TFDP1, KDR, AMOTL2, PDGFB, FGFR1, EDN1, and NOTCH1. Several transcription factors were also found to be upregulated in idiopathic pulmonary arterial hypertension endothelial cells including SOX18, STRA13, LYL1, and ELK, which have known roles in regulating endothelial cell phenotype. In particular, SOX18 was implicated through bioinformatics analyses in regulating the idiopathic pulmonary arterial hypertension endothelial cell transcriptome. Furthermore, idiopathic pulmonary arterial hypertension endothelial cells upregulated expression of FAM60A and HDAC7, potentially affecting epigenetic changes in idiopathic pulmonary arterial hypertension endothelial cells. Pericyte/smooth muscle cells expressed genes implicated in regulation of cellular apoptosis and extracellular matrix organization, and several ligands for genes showing increased expression in endothelial cells. In conclusion, our study represents the first detailed look at the transcriptomic landscape across idiopathic pulmonary arterial hypertension lung cells and provides robust insight into alterations that occur in vivo in idiopathic pulmonary arterial hypertension lungs.