Project description:Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 hours at 8˚C enhanced crab tolerance during a 1h exposure to -2°C relative to crabs acclimated to 18˚C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm and cold acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12h of thermal acclimation. Genes strongly upregulated in warm acclimated crabs represented immune response and extracellular / intercellular processes, suggesting that warm acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold acclimated crabs included many that are involved in glucose production suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene expression-related changes in homeostasis begin within 12 hours – the length of a tidal cycle. all array data and raw images archived at the Porcelain Crab Array Database (http://array.sfsu.edu)
Project description:Background biology: Global warming has accelerated in recent decades, with the Arctic warming 2–3 times faster than the global average. As a result boreal species are expanding into the Arctic, at a pace reflecting environmental warming. Nevertheless, the poleward expansion of boreal marine species is restricted by their ability to tolerate low water temperatures, and in the case of intertidal species, sub-zero air temperatures during winter. In Greenland, however, the number of days with extreme sub-zero air temperatures has decreased by more than 50% since the 1950’s, suggesting that the low air temperature constraint is weakening. Although boreal intertidal species could potentially benefit from this warmer climate to establish populations in the Arctic, recent work has shown that local intertidal summer air temperatures in Greenland can exceed 36°C. This temperature is above the thermoregulatory capacity of many boreal intertidal species, including the highly abundant blue mussel Mytilus edulis. Therefore will further colonisation of M. edulis in Greenland be inhibited by the increasingly warm summer temperatures. Aim of experiment: Intertidal animals (Greenland blue mussel M. edulis) were sampled in situ on the first warm days of the year from the inner (warmer) and outer (cooler) regions of the Godthåbsfjorden around Nuuk (64°N) to examine the fjord temperature gradient effect. In addition, subtidal M. edulis were also collected and subjected to two acute temperature shocks of 22 and 32°C, which represented common and extreme summer air temperatures for intertidal habitats near Nuuk.
Project description:Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 hours at 8˚C enhanced crab tolerance during a 1h exposure to -2°C relative to crabs acclimated to 18˚C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm and cold acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12h of thermal acclimation. Genes strongly upregulated in warm acclimated crabs represented immune response and extracellular / intercellular processes, suggesting that warm acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold acclimated crabs included many that are involved in glucose production suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene expression-related changes in homeostasis begin within 12 hours – the length of a tidal cycle. all array data and raw images archived at the Porcelain Crab Array Database (http://array.sfsu.edu) n=264 specimens were divided into warm (18°C, n=96), cold (8°C, n=96), and control (13°C, n=72) acclimation groups. Crabs were sampled from the 13°C group at 0 h (the start of the experiment) and 24 h, the termination of the experiment. Crabs were sampled from the warm and cold acclimation groups at 6, 12, 18, and 24 hours following the start of thermal acclimation. At each time point, heart tissue from n=16 crabs from each group was dissected, flash frozen and stored at −80°C. A pooled total aRNA sample was prepared for each group by mixing equal quantities of total RNA from n=5 individuals in each group in order to have the same amount of biological diversity within each pooled RNA sample. For microarray hybridizations we used n=25 slides in an incomplete loop design where each sample was hybridized n=5 times, 2-3 times labelled with each Cy dye
Project description:Based on its phylogenetic relationship to monitor lizards (Varanidae), Gila monsters (Heloderma spp.), and the earless monitor Lanthanotus borneesis, the Chinese crocodile lizard, Shinisaurus crocodilurus, has been assigned to the Toxicofera clade, which comprises venomous reptiles. However, no data about composition and biological activities of its oral secretion have been reported. In the present study, a proteomic analysis of the mandibular gland of S. crocodilurus and, for comparison, of the herbivorous Solomon Island skink Corucia zebrata, was performed. Scanning electron microscopy (SEM) of the teeth from S. crocodilurus revealed a sharp ridge on the anterior surface, but no grooves, whereas those of C. zebrata possess a flattened crown with a pointed cusp. Proteomic analysis of their gland extracts provided no evidence of venom-derived peptides or proteins, strongly supporting the non-venomous character of these lizards.
Project description:Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features, such as increased basal metabolic rate, low serum lipid levels, increased blood pressure, short stature and broad skulls that have been attributed to adaptation to the extreme cold climate. We have genotyped 200 individuals from ten indigenous Siberian populations for 730,525 SNPs across the genome to identify genes and non-coding regions that have undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least three distinct population clusters could be identified among the Siberians, each of which showed a number of unique signals of selection. We present a list of cold adaption candidate genes that showed significant signals of positive selection with our strongest signals associated with genes involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific long-range haplotype signals from those introduced by admixture. 200 blood samples from 200 Siberian individuals that come from ten different indigenous populations were genotypes for 730,525 SNPs across the genome. Eighteen Vietnamese samples were also genotyped and used as reference samples.
Project description:Ixodes pacificus, the vector of Borrelia burgdorferi (Bb) on the west coast, feeds on a variety of hosts including rodents, birds, and lizards. While rodents are reservoirs for Bb and can infect juvenile ticks, lizards are Bb-refractory. Despite the range of bloodmeals for I. pacificus, it is undetermined how larval host bloodmeal identity may affect future nymphal vector competence. Here, we conducted a transcriptome analysis on I. pacificus to determine whether and through what mechanisms host bloodmeal history affects vector competency of I. pacificus for the Lyme disease pathogen.
Project description:The main findings of the current study were that exposing adult sockeye salmon Oncorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced an mRNA-level heat shock response that is exacerbated with swimming. Similar immune defense-related responses were also observed. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12-13M-BM-0 C) and warm (18-19M-BM-0 C) treated fish (P < 0.01), with stress response (GO:0006950; P = 0.014) and response to fungus (GO:0009620; P = 0.003) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119; P = 0.0019) and electron transport chain (GO:0022900; P = 0.00043) increased in cold-treated fish. By studying single genes with RT-qPCR, warm treatment fish from the Chilko population of O. nerka induced expression of heat shock protein (hsp) 90M-NM-1, hsp90M-NM-2 and hsp30, as well as interferon-inducible protein (P < 0.05). A Nechako population of O. nerka with a narrower thermal tolerance window than the Chilko population showed even more pronounced responses to the warm treatment. In conclusion, it appears that during their once-in-the-lifetime migration these adult sockeye salmon encounter conditions that induce several cellular defense mechanisms. As river temperatures continue to increase, it remains to be seen whether or not these cellular defenses provide enough protection for all sockeye salmon populations. Two condition experiment; cold treated fish vs. warm treated fish, n=4 in both group
Project description:Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features, such as increased basal metabolic rate, low serum lipid levels, increased blood pressure, short stature and broad skulls that have been attributed to adaptation to the extreme cold climate. We have genotyped 200 individuals from ten indigenous Siberian populations for 730,525 SNPs across the genome to identify genes and non-coding regions that have undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least three distinct population clusters could be identified among the Siberians, each of which showed a number of unique signals of selection. We present a list of cold adaption candidate genes that showed significant signals of positive selection with our strongest signals associated with genes involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific long-range haplotype signals from those introduced by admixture.
Project description:St (common potato) is a freezing sensitive species unable to cold acclimate. The close wild relative Sc is freezing tolerant and able to cold acclimate. Here we compare the cold transcriptome of these two species with different levels of freezing tolerance. We also identify the putative CBF regulons by comparing the transcriptomes of wild type plants with that of 35S::AtCBF3 transgenic lines in both species. Plants were grown in 16:8 photoperiod. Eight hours after dawn, plants were either transfered to cold or kept in the warn. Wild type S. tuberosum and S. commersonii were grown at 2oC for 2h, 24h and 7 days. Wild type plants grown under warm temperatures for 2h was used as control for 2h cold samples; wild type warm grown plants for 24h were used as controls for 24h and 7 days cold samples. Under warm conditions, S. commersonii 35S::AtCBF3 lines were compared to S. commersonii wild type plants (same thing was done for S. tuberosum).