Project description:In this study, we provide a time-series analysis of the transcriptional response of Gemmatimonas phototrophica AP64T during the dark-to-light transition under aerobic and semiaerobic conditions. By analysing its transcriptome, focussing especially on PS-related genes, we tested the hypothesis that G. phototrophica might constitute an example of an anoxygenic phototroph on its evolutionary pathway from anaerobic to aerobic life-style.
Project description:In this study, we provide a time-series analysis of the transcriptional response of Gemmatimonas phototrophica AP64T during the dark-to-light transition under aerobic and semiaerobic conditions. By analysing its transcriptome, focussing especially on PS-related genes, we tested the hypothesis that G. phototrophica might constitute an example of an anoxygenic phototroph on its evolutionary pathway from anaerobic to aerobic life-style.
Project description:In this study, we provide a time-series analysis of the transcriptional response of Gemmatimonas phototrophica AP64T during the dark-to-light transition under aerobic and semiaerobic conditions. By analysing its transcriptome, focussing especially on PS-related genes, we tested the hypothesis that G. phototrophica might constitute an example of an anoxygenic phototroph on its evolutionary pathway from anaerobic to aerobic life-style.
Project description:Gemmatimonas phototrophica is the only phototrophic member of the recently discovered bacterial phylum Gemmatimonadetes. It was isolated from a freshwater lake in the Gobi desert and first described in 2014. So far, Gemmatimonas phototrophica is the only bacterium to have received a complete set of photosynthesis-related genes by horizontal gene transfer from an ancient phototrophic species from the phylum Proteobacteria. This organism illustrates the possibility for engineering phototrophic capability in a non-phototrophic organism and is therefore of great interest to the field of synthetic biology. The structure of the photosynthetic reaction center-light harvesting 1 complex is under investigation by cryo-EM. Proteomic analysis verified the identities of the expected protein components of this complex and, additionally revealed polypeptides that were previously undiscovered and could be mapped to the cryo-EM images.