Project description:Changes in bacterial communities and functions associated with litter degradation during forest succession caused by forest disease.
| PRJNA867524 | ENA
Project description:Fungal community structure shifts in litter degradation along forest succession caused by pine wilt disease
| PRJNA954836 | ENA
Project description:The changes of rhizosphere soil microbiome and metabolome during forest succession caused by forest disease
Project description:The common edible mushroom Agaricus bisporus is a basidiomycete that thrives on decaying plant material in the forests and grasslands of North America and Europe. It is adapted to forest litter and contributes to global carbon recycling, depolymerizing cellulose, hemicellulose and lignin in plant biomass. A. bisporus is also an edible mushroom that is widely cultivated and economically important. However, relatively little is known about how A. bisporus grows in this controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were highly expressed during the spawning stage day 16 and had low expression during all the other growth stages which could indicate that lignin is not modified after the spawning stage. Our results also revealed differences in gene expression involved in cellulose and hemicellulose degradation between the first and second flushes. This could partially explain the reduction in the number of mushrooms during the second flush.
Project description:Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, -glucosidases, endoxylanases, -xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.
Project description:The common edible mushroom Agaricus bisporus is a basidiomycete that thrives on decaying plant material in the forests and grasslands of North America and Europe. It is adapted to forest litter and contributes to global carbon recycling, degrading cellulose, hemicellulose and lignin in plant biomass to oligomers and monomers. A. bisporus is also an edible mushroom that is widely cultivated and economically important. However, relatively little is known about how A. bisporus grows in this controlled environment and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were highly expressed during the spawning stage day 16 and had low expression during all the other growth stages which could indicate that lignin is not modified after the spawning stage. Our results also revealed differences in gene expression involved in cellulose and hemicellulose degradation between the first and second flushes. This could partially explain the reduction in the number of mushrooms during the second flush.
Project description:The common edible mushroom Agaricus bisporus is a basidiomycete that thrives on decaying plant material in the forests and grasslands of North America and Europe. It is adapted to forest litter and contributes to global carbon recycling, degrading cellulose, hemicellulose and lignin in plant biomass to oligomers and monomers. A. bisporus is also an edible mushroom that is widely cultivated and economically important. However, relatively little is known about how A. bisporus grows in this controlled environment and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were highly expressed during the spawning stage day 16 and had low expression during all the other growth stages which could indicate that lignin is not modified after the spawning stage. Our results also revealed differences in gene expression involved in cellulose and hemicellulose degradation between the first and second flushes. This could partially explain the reduction in the number of mushrooms during the second flush. This study compares the gene expression of A. bisporus A15 at different stages of its life cycle using the controlled environment of indoor commercial cultivation. The samples were taken at the spawning stage, primordial stage, first flush, after first flush, second flush and after second flush, respectively
Project description:Using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) on microcosm samples from early phase plant litter degradation, we found that proteins and condensed hydrocarbons are the compounds with the strongest correlation to dissolved organic carbon (DOC) concentration. Proteins correlated positively with DOC concentration, while tannins and condensed hydrocarbons correlated negatively with DOC. With nuclear magnetic resonance (NMR) spectroscopy, we identified 15 individual compounds associated with DOC concentration. Through random forest, neural network, and indicator species analyses, we identified bacterial and fungal taxa associated with DOC concentration and additionally identified connections between microorganisms and DOC chemical composition.