Project description:The central nervous system (CNS), despite the presence of strategically positioned anatomical barriers designed to protect it, is not entirely isolated from the immune system. In fact, it remains physically connected to and can be influenced by the peripheral immune system. How the CNS retains such responsiveness while maintaining “immune privilege” remains an outstanding conundrum. In searching for molecular cues that derive from the CNS and allow its direct communication with the immune system, we discovered a repertoire of CNS-derived endogenous guardian peptides presented on major histocompatibility complex (MHC) II molecules at the CNS borders. During homeostasis, a preponderance of these guardian peptides were found to be bound to MHC II molecules throughout the path of lymphatic drainage from the brain to its surrounding meninges and its draining cervical lymph nodes. With neuroinflammatory disease, however, the presentation of guardian peptides was diminished. Fascinatingly, boosting the presence of these guardian peptides reinforced a population of suppressor CD4+ T cells and significantly reduced CNS autoimmune disease. This unexpected discovery of CNS-derived autoimmune guardian peptides may be the molecular key adapting the CNS to receive information and to maintain continuous dialogue with the immune system while balancing overt autoreactivity. This sheds new light on how we conceptually think about and therapeutically target neuroinflammatory and neurodegenerative diseases.
Project description:Conditional knockout of Fbxo45 in alveolar epithelial type II cells (AT2) in mice (cKO) resulted in spontaneous lung adenocarcinoma. To investigate why deletion of Fbxo45 in AT2 leads to lung adenocarcinoma. We isolated primary AT2 cells from 6-month-old WT, cKO mice for high-throughput RNA-sequencing analysis. (WT=2, cKO=2)
Project description:Environmental agents induce intragenic alterations in the FRA3B/FHIT chromosome fragile site, resulting in fragile FHIT allele loss early in cancer development. Fhit knockout mice are predisposed to tumor development and Fhit gene therapy reduces tumor burden. Repair-deficient cancers are likely to be Fhit-deficient and Fhit-deficient cells show enhanced resistance to ultraviolet C, mitomycin C, camptothecin and oxidative stress-induced cell killing. Loss of Fhit leads to alterations in the DNA damage response checkpoint and contributes to DNA instability. Hsp60/Hsp10 are Fhit interactors, suggesting a direct role for Fhit in stress responses. Fhit also interacts with and stabilizes ferrodoxin reductase (Fdxr), a mitochondrial flavoprotein that transfers electrons from NADPH to cytochrome P450, suggesting a role for Fhit in the modulation of reactive oxygen species production and of genomic damage.