Project description:<p>The efficacy of the adaptive immune response declines dramatically with age, but the cell-intrinsic mechanisms driving the changes characteristic of immune aging in humans remain poorly understood. One hallmark of immune aging is the loss of self-renewing naive cells and the accumulation of differentiated but dysfunctional cells within the CD8 T cell compartment. Using ATAC-seq, we first inferred the transcription factor binding activities that maintain the naive and central and effector memory CD8 T cell states in young adults. Integrating our results with RNA-seq, we determined that BATF, ETS1, Eomes, and Sp1 govern transcription networks associated with specific CD8 T cell subset properties, including activation and proliferative potential. Extending our analysis to aged humans, we found that the differences between memory and naive CD8 T cells were largely preserved across age, but that naive and central memory cells from older individuals exhibited a shift toward a more differentiated pattern of chromatin openness. Additionally, aged naive cells displayed a loss in chromatin openness at gene promoters, a phenomenon that appears to be due largely to a loss in binding by NRF1, leading to a marked drop-off in the ability of the naive cell to initiate transcription of mitochondrial genes. Our findings identify BATF- and NRF1-driven gene regulation as targets for delaying CD8 T cell aging and restoring T cell function.</p>
Project description:The transcriptome of naive OT-I T cells was compared to memory CD8 T cells after 1, 2, 3, or 4 infection with ovalbumin expressing Listeria monocytogenes (LM-OVA). Naive Thy1.1 OT-I T cells were adoptively transferred into Thy1.2 naive hosts prior to infection with LM-OVA. The resulting memory CD8 T cell population was again adoptively transferred into naive hosts and the recipient mice were again infected with LM-OVA. The adoptive transfer was repeated up to four times to generate memory CD8 T cells with up to four consecutive antigen stimulations. Three individual mice were analyzed for each group. For quaternary memory CD8 T cells, spleens from two to three mice were pooled for each sample. Naive OT-I T cells served as control samples. http://dx.doi.org/10.1016/j.immuni.2010.06.014
Project description:The generation of CD8+ T-cell memory is an important aim of immunization. While several distinct subsets of CD8+ T-cell memory have been described, the lineage relationships between effector (EFF), effector memory (EM) and central memory (CM) T cells remain contentious. Specifically, there is contradictory experimental evidence to support both the linear (Naive>EFF>EM>CM) and progressive differentiation (Naive>CM>EM>EFF) models. In this study, we applied a systems biology approach to examine global transcriptional relationships between the three major CD8+ T cell subsets arising endogenously as a result of vaccination with three different prime-boost vaccine regimens. Differential gene expression analysis and principle component analysis revealed that central memory cells were more closely related to naive T cells than both effector memory and effector cells. When the transcriptional relationships between subsets were enriched in an unbiased fashion with known global transcriptional changes that result when T-cells repeatedly encounter antigen, our analysis favored a model whereby cumulative antigenic stimulation drives differentiation specifically from Naive > CM > EM > EFF. These findings provide an insight into the lineage relationship between mature CD8+ T-cell subsets and will help in the rational design of vaccines aimed at generating effective immune responses against infections and cancer. Effector (EFF), effector memory (EM), central memory (CM) and naive CD8+ T cells from mice spleen. Memory subset arise endogenously as a result of vaccination with three different prime-boost vaccine regimens: DNA-rAd5, rAd5-rAd5 and rAd5-rLCMV.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Cellular binary fate decisions require the progeny to silence genes associated with the alternative fate. The major subsets of alpha:beta T cells have been extensively studied as a model system for fate decisions. While the transcription factor RUNX3 is required for the initiation of Cd4 silencing in CD8 T cell progenitors, it is not required to maintain the silencing of Cd4 and other helper T lineage genes. The other runt domain containing protein, RUNX1, silences Cd4 in an earlier T cell progenitor, but this silencing is reversed whereas the gene silencing after RUNX3 expression is not reverse. Therefore, we hypothesized that RUNX3 and not RUNX1 recruits other factors that maintains the silencing of helper T lineage genes in CD8 T cells. To this end, we performed a proteomics screen of RUNX1 and RUNX3 to determine candidate silencing factors.
Project description:Disturbed expression of microRNAs (miRNAs) in regulatory T-cells (Tregs) leads to development of autoimmunity in experimental mouse models. However, the miRNA expression signature characterizing Tregs of autoimmune diseases, such as rheumatoid arthritis (RA) has not been determined yet. Moreover, the technical limitations prevented the analysis of such minute T-cell population as naive and memory Tregs. In this study we have used a microarray approach to comprehensively analyze miRNA expression signatures of naive Tregs (CD4+CD45RO-CD25++), memory Tregs (CD4+CD45RO+CD25+++), as well as conventional naive (CD4+CD45RO-CD25-) and memory (CD4+CD45RO+CD25-) T-cells (Tconvs) derived from peripheral blood of RA patients, and matched healthy controls. Differential expression of selected miRNAs was validated by TaqMan-based qRT-PCR. We found a positive correlation between increased expression of miR-451 in T-cells of RA patients and disease activity score (DAS28), ESR levels, and serum levels of IL-6. Moreover, we found characteristic, disease and treatment independent, global miRNA expression signatures defining naive Tregs, memory Tregs, naive Tconvs and memory Tconvs. The analysis allowed us to define miRNAs characteristic for a general naive phenotype (e.g. miR-92a), a general memory phenotype (e.g. miR-21, miR-155), and most importantly miRNAs specifically expressed in both naive and memory Tregs, defining as such the Treg phenotype (i.e. miR-146a, miR-3162, miR-1202, miR-1246a, and miR-4281). MicroRNA profiling was performed in four CD4+ T-cell subsets: naive Tconventional (CD3+CD8-CD45RO-CD25-), naive Tregulatory (CD3+CD8-CD45RO-CD25+), memory Tconventional (CD3+CD8-CD45RO+CD25-), and memory Tregulatory (CD3+CD8-CD45RO+CD25+) derived from 2 healthy controls, and 6 rheumatoid arthritis patients (total n=8).
Project description:CD8 T cells normally differentiate from resting naïve T cells into function effector and then memory CD8 T cells following acute infections. During chronic viral infections, however, virus-specific CD8 T cells often become exhausted. We used microarrays to examine the gene expression differences between naive, effector, memory and exhausted virus-specific CD8 T cells following lymphocytic choriomeningitis virus infection. Experiment Overall Design: Three or four independent samples were sorted by flow cytometry for each cell type (naive, effector, memory and exhausted) virus-specific CD8 T cells. RNA was extracted and hybridized to Affymetrix microarrays.
Project description:Gene expression profiles of CD8+ partial memory T cells (Tpm) compared to naive, effector and memory CD8+ T cells (analysis 1, 17 samples)
Project description:Gene expression profiles of CD8+ partial memory T cells (Tpm) compared to naive, effector and memory CD8+ T cells (analysis 2, 20 samples)