Project description:Observational, Multicenter, Post-market, Minimal risk, Prospective data collection of PillCam SB3 videos (including PillCam reports) and raw data files and optional collection of Eneteroscopy reports
Project description:Cyst formation is a key feature of the T. gondii life cycle but the genetic networks that drive this process are not yet fully characterized. To identify new components of this network, we compared T. gondii to its nearest extant relative Hammondia hammondi given the critical differences between these species in the timing and efficiency of cyst formation. Using transcriptional data from critical developmental and pH exposure time points from both species, we identified the gene TGVEG_311100, which we named Regulator of Cystogenesis 1 (ROCY1), as being both necessary and sufficient for cyst formation in T. gondii. Compared to WT parasites, TGVEG?ROCY1 parasites formed significantly fewer tissue cysts in response to alkaline pH stress in vitro and cysts were nearly undetectable in mouse brains for up to 9 weeks post-infection. Overexpression of tagged ROCY1 in WT parasites was sufficient to induce cyst formation in vitro in both WT and ROCY1-deficient parasites, demonstrating that ROCY1 is both necessary and sufficient for cyst formation. Moreover this induction of cyst formation required at least 1 of 3 predicted CCCH Zinc finger domains. Mice chronically infected with ?ROCY1 parasites had detectable tachyzoites in the brain for up to 37 days post-infection (while mice infected with WT parasites did not), and CNS transcriptional analyses at day 30 post-infection throughout the chronic phase of infection revealed inflammatory signatures consistent with acute infection in ?ROCY1 parasites compared to WT. Despite our inability to detect brain cysts in infected mice, both WT and ?ROCY1 knockout parasites reactivated after dexamethasone treatment with similar timing and magnitude for up to 5 months post infection, challenging the paradigm that long term parasite persistence in the CNS requires cyst formation. These data identify a new regulator of cyst formation in T. gondii that is both necessary and sufficient for cyst formation, and whose function relies on its conserved nucleic acid binding motif.
Project description:Polycystic Kidney Disease is characterized by the formation of large fluid-filled cysts that eventually destroy the renal parenchyma leading to end-stage renal failure. Although remarkable progress has been made in understanding the pathologic mechanism of the disease, the precise orchestration of the early events leading to cyst formation is still unclear. Abnormal cellular proliferation was traditionally considered to be one of the primary irregularities leading to cyst initiation and growth. Consequently, many therapeutic interventions have focused on targeting this abnormal proliferation, and some have even progressed to clinical trials. However, the role of proliferation in cyst development was primarily examined at stages where cysts are already visible in the kidneys and therefore at later stages of disease development. In this study we focused on the cystic phenotype since birth in an attempt to clarify the temporal contribution of cellular proliferation in cyst development. Using a PKD2 transgenic rat model (PKD2 (1-703)) of different ages (0-60 days after birth) we performed gene expression profiling and phenotype analysis by measuring various kidney parameters. Phenotype analysis demonstrated that renal cysts appear immediately after birth in the PKD2 transgenic rat model (PKD2 (1-703)). On the other hand, abnormal proliferation occurs at later stages of the disease as identified by gene expression profiling. Interestingly, other pathways appear to be deregulated at early stages of the disease in this PKD model. Our data suggest that cystogenesis precedes deregulation of proliferation-related pathways, suggesting that proliferation abnormalities may contribute in cyst growth rather than cyst formation. In this study we focused on the cystic phenotype since birth in an attempt to clarify the temporal contribution of cellular proliferation in cyst development. Using a PKD2 transgenic rat model (PKD2 (1-703)) of different ages (0,6 and 24 days after birth) we performed gene expression profiling of kidney cells.
Project description:Initial cysts that are formed upon Pkd1 loss in mice impose persistent stress on surrounding tissue and trigger a cystic snowball effect, in which local aberrant PKD-related signaling increases the likelihood of new cyst formation, ultimately leading to accelerated disease progression. Although many pathways have been associated with PKD progression, the knowledge of early changes near initial cysts is limited. To perform an unbiased analysis of transcriptomic alterations in the cyst microenvironment, microdomains were collected from kidney sections of iKsp-Pkd1del mice with scattered Pkd1-deletion using Laser Capture Microdissection. These microdomains were defined as F4/80-low cystic, representing early alterations in the cyst microenvironment, F4/80-high cystic, with more advanced alterations, or non-cystic. RNA sequencing and differential gene expression analysis revealed 953 and 8088 dysregulated genes in the F4/80-low and F4/80-high cyst microenvironment, respectively, when compared to non-cystic microdomains. In the early cyst microenvironment, several injury-repair, growth, and tissue remodeling-related pathways were activated, accompanied by mild metabolic changes. In the more advanced F4/80-high microdomains, these pathways were potentiated and the metabolism was highly dysregulated. Upstream regulator analysis revealed a series of paracrine factors with increased activity in the early cyst microenvironment, including TNFSF12 and OSM. In line with the upstream regulator analysis, TWEAK and Oncostatin-M promoted cell proliferation and inflammatory gene expression in renal epithelial cells and fibroblasts in vitro. Collectively, our data provide an overview of molecular alterations that specifically occur in the cyst microenvironment and identify paracrine factors that may mediate early and advanced alterations in the cyst microenvironment.
Project description:OBJECTIVE: Due to the common occurrence of peritumoral cysts throughout the central nervous system tumors, hemangioblastomas (HBs) provide a model of cyst to further study the molecular mechanisms of peritumoral cyst formation. METHODS: We conducted an integrated lipidomics and transcriptomics analysis on solid and cyst HB samples, to elucidate the changes in lipid profile and the expression levels of genes associated with lipid metabolism in the cyst formation. RESULTS: Transcriptomic analysis revealed differentially expressed genes between the solid and cystic HBs. The lipidomic analysis further showed a significant reduction in the abundance of triacylglycerol, ceramide, lysophosphatidylcholine, and lysophosphatidylethanolamine, and an increase in phosphatidylcholine and phosphatidylethanolamine in the cystic group. Besides, bioinformatics analysis revealed altered lipid biosynthesis, glycerophospholipid metabolism and phospholipase activity in the cyst HBs. CONCLUSION: Our findings indicate that aberrant lipid metabolism is a causative factor of cyst formation in HBs, and provide novel insights into the role of lipid metabolism in HBs.
Project description:Polycystic Kidney Disease is characterized by the formation of large fluid-filled cysts that eventually destroy the renal parenchyma leading to end-stage renal failure. Although remarkable progress has been made in understanding the pathologic mechanism of the disease, the precise orchestration of the early events leading to cyst formation is still unclear. Abnormal cellular proliferation was traditionally considered to be one of the primary irregularities leading to cyst initiation and growth. Consequently, many therapeutic interventions have focused on targeting this abnormal proliferation, and some have even progressed to clinical trials. However, the role of proliferation in cyst development was primarily examined at stages where cysts are already visible in the kidneys and therefore at later stages of disease development. In this study we focused on the cystic phenotype since birth in an attempt to clarify the temporal contribution of cellular proliferation in cyst development. Using a PKD2 transgenic rat model (PKD2 (1-703)) of different ages (0-60 days after birth) we performed gene expression profiling and phenotype analysis by measuring various kidney parameters. Phenotype analysis demonstrated that renal cysts appear immediately after birth in the PKD2 transgenic rat model (PKD2 (1-703)). On the other hand, abnormal proliferation occurs at later stages of the disease as identified by gene expression profiling. Interestingly, other pathways appear to be deregulated at early stages of the disease in this PKD model. Our data suggest that cystogenesis precedes deregulation of proliferation-related pathways, suggesting that proliferation abnormalities may contribute in cyst growth rather than cyst formation.
Project description:Through genome-wide profiling of chromatin dynamics, we revealed a profound increase of global chromatin accessibility and a switch from H3K9me3 to H3K9ac on cis-regulatory DNA elements of cyst-associated genes during cystogenesis. In an integrated epigenomic and transcriptomic analysis, we identified a transcription factor network associated with dynamic shifts in chromatin states. Functionally, we showed that inhibition of H3K9ac acetyltransferase or H3K9me3 demethylase restored chromatin states and gene expression program to slow cyst growth in PLD mice.