Project description:Nematostella vectensis is a venomous organism with a complex life cycle. We harness different approaches to study venom composition dynamics along its life cycle. Our methods include but not limited to transcriptomica and proteomics. Here we perform semi quantitative analysis of Nematostella proteom at 4 developmental stages to compare abundance of different toxins.
Project description:While FGF mediated MEK/ERK signaling is required for apical tuft formation and metamorphosis in the sea anemone Nematostella vectensis (Rentzsch et al, 2008), nothing is known about the role of MEK/ERK signaling in inducing germ layers and cell types during early developmental stages. We therefore performed a genome wide expression array on UO126 (MEK inhibitor) treated blastula stages compared to DMSO treated control embryos and identified genes potentially involved in neurogenesis, germ layer specification and axial patterning.We performed transcriptional profiling of Nematostella vectensis blastula stages (24 hours post fertilisation @ 17C) using a custom made whole genome array (4x72K - A-MEXP-2380). DMSO treated wild-type embryos were compared to U0126 (MEK Inhibitor) treated embryos at the blastula stage.
Project description:Bilaterian animals differ from other metazoans in their apparent bilateral symmetry and the development of a third germ layer. Both might have facilitated the evolution of the diverse and complex bilaterian body plans. The first cnidarian genome sequence revealed that despite their morphological simplicity, this sister group to all bilaterians shares an immense genomic complexity with vertebrates. This suggested that it might have been the complexity of gene regulation which increased during the evolution of bilaterians. We compared the gene regulatory landscape of cnidarians and bilaterians. To this end we generated the first genome-wide prediction of gene regulatory elements and profiled five epigenetic marks in a non-bilaterian animal, the cnidarian Nematostella vectensis. We found that the location of chromatin modifications relative to genes and distal enhancers is conserved among eumetazoans. Surprisingly, the genomic landscape of gene regulatory elements is highly similar between Nematostella and bilaterian model organisms. This suggests that complex regulation of developmental gene expression evolved in eumetazoans without a major increase in complexity in bilaterians. ChIP-seq of p300, RNA Pol2, and five histone modifications in Nematostella vectensis.
Project description:We utilized the eyeless sea anemone, Nematostella vectensis, to quantify gene expression differences between different colors of light (red, green, blue) and in constant darkness through comparisons of 96 transcriptomes
Project description:Changes in Nematostella vectensis proteome expression were analyzed in 2 different Nematostella populations along the east coast of USA in different stress conditions vrs. normal growth temperature.
Project description:We used bacteria isolated from field samples of Nematostella vectensis to quantify gene expression through comparisons of transcriptomes.
Project description:Here we perform semi quantitative analysist of the proteome of Nematostella vectensis from different locations in the USA to compare abundance of different toxins