Project description:Drosophila X chromosomes are subject to dosage compensation in males and are known to have a specialized chromatin structure in the male soma. We are interested in how specific chromatin structure change contributes to X chromosome hyperactivity and dosage compensation. We have conducted a global analysis of localize two dosage compensation complex dependent histone marks H4AcK16 and H3PS10 and one dosage compensation complex independent histone mark H3diMeK4 in the genome, especially on X chromosome by ChIP-chip approach in both male and female adult flies. We also probed general genomewide chromatin structure by deep DNA sequencing of sheared ChIP input DNA from male and female adult flies.
Project description:Drosophila X chromosomes are subject to dosage compensation in males and are known to have a specialized chromatin structure in the male soma. We are interested in how specific chromatin structure change contributes to X chromosome hyperactivity and dosage compensation. We have conducted a global analysis of localize two dosage compensation complex dependent histone marks H4AcK16 and H3PS10 and one dosage compensation complex independent histone mark H3diMeK4 in the genome, especially on X chromosome by ChIP-chip approach in both male and female adult flies. We also probed general genomewide chromatin structure by deep DNA sequencing of sheared ChIP input DNA from male and female adult flies. Chromatin immunoprecipitations were performed in 5-7 day aged adult male and female flies with three histone modification antibodies. ChIP enriched DNA and input DNA was labeled by Cy3 or Cy5 dye separately and hybridized simultaneously to the Drosophila FlyGEM arrays. At least two biological replicates were performed for each antibody and sex. DNA-seq (NIDDK-Drosophila-Illumina-DNASeq) were performed on ChIP-input sheared DNA to check the general chromatin structure of different chromosome.
Project description:In Drosophila, two chromosome-wide compensatory systems have been characterized; the dosage compensation system acting on the male X-chromosome and the chromosome specific regulation of genes located on the heterochromatic 4th chromosome. Dosage compensation in Drosophila is accomplished by hypertranscription of the single male X-chromosome mediated by the MSL-complex. The mechanism for this compensation is suggested to be an MSL-complex mediated enhanced transcriptional elongation while the mechanism for the compensation mediated by Painting of fourth (POF) on the 4th chromosome has remained elusive. Here we show that POF binds to nascent RNA and this binding is associated with an increase in amount of chromosome 4 transcripts. Furthermore, genes located on the 4th chromosome are enriched in binding of the nucleoplasmic nucleporin component NUP98 and this enrichment correlates to increased POF binding. We also show that genes located in heterochromatic regions have a shorter transition time from site of transcription and to the nuclear envelope. Our current work broadens the understanding about how genes in heterochromatic regions can overcome the repressive influence of their hostile environment.
Project description:In Drosophila, two chromosome-wide compensatory systems have been characterized; the dosage compensation system acting on the male X-chromosome and the chromosome specific regulation of genes located on the heterochromatic 4th chromosome. Dosage compensation in Drosophila is accomplished by hypertranscription of the single male X-chromosome mediated by the MSL-complex. The mechanism for this compensation is suggested to be an MSL-complex mediated enhanced transcriptional elongation while the mechanism for the compensation mediated by Painting of fourth (POF) on the 4th chromosome has remained elusive. Here we show that POF binds to nascent RNA and this binding is associated with an increase in amount of chromosome 4 transcripts. Furthermore, genes located on the 4th chromosome are enriched in binding of the nucleoplasmic nucleporin component NUP98 and this enrichment correlates to increased POF binding. We also show that genes located in heterochromatic regions have a shorter transition time from site of transcription and to the nuclear envelope. Our current work broadens the understanding about how genes in heterochromatic regions can overcome the repressive influence of their hostile environment.
Project description:In Drosophila, two chromosome-wide compensatory systems have been characterized; the dosage compensation system acting on the male X-chromosome and the chromosome specific regulation of genes located on the heterochromatic 4th chromosome. Dosage compensation in Drosophila is accomplished by hypertranscription of the single male X-chromosome mediated by the MSL-complex. The mechanism for this compensation is suggested to be an MSL-complex mediated enhanced transcriptional elongation while the mechanism for the compensation mediated by Painting of fourth (POF) on the 4th chromosome has remained elusive. Here we show that POF binds to nascent RNA and this binding is associated with an increase in amount of chromosome 4 transcripts. Furthermore, genes located on the 4th chromosome are enriched in binding of the nucleoplasmic nucleporin component NUP98 and this enrichment correlates to increased POF binding. We also show that genes located in heterochromatic regions have a shorter transition time from site of transcription and to the nuclear envelope. Our current work broadens the understanding about how genes in heterochromatic regions can overcome the repressive influence of their hostile environment. Pof mutant vs. wild type, 3 replicates