Project description:By comparing the transcriptome from proximal (quadriceps femoris, QF) and distal (tibialis anterior, TA)muscle groups in dysferlin deficient mouse muscle (the SJL mutation bred onto C57BL/10 to produces C57BL/10.SJL_Dysf) with proximal and distal muscle groups from control C57BL/10 mice of an equivalent age (3-weeks old, prior to the onset of overt pathology) we aim to address the issues of muscle selectivity in this this form of muscular dystrophy.
Project description:By comparing the transcriptome from proximal (quadriceps femoris, QF) and distal (tibialis anterior, TA)muscle groups in dysferlin deficient mouse muscle (the SJL mutation bred onto C57BL/10 to produces C57BL/10-SJL.Dysf) with proximal and distal muscle groups from control C57BL/10 mice of an equivalent age (3-weeks old, prior to the onset of overt pathology) we aim to address the issues of muscle selectivity in this this form of muscular dystrophy. Keywords: parallel sample
Project description:Dysferlin is expressed in skeletal and cardiac muscle. However, dysferlin deficiency, namely limb girdle muscular dystrophy 2B (LGMD2B) and Myoshi myopathy, results in skeletal muscle weakness and spares the heart. This dichotomy could be caused by differential regulation of protective mechanisms. Therefore, we compared intraindividual mRNA expression profiles between cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and normal C57BL/6 mice. Keywords: parallel sample
Project description:Dysferlin is expressed in skeletal and cardiac muscle. However, dysferlin deficiency, namely limb girdle muscular dystrophy 2B (LGMD2B) and Myoshi myopathy, results in skeletal muscle weakness and spares the heart. This dichotomy could be caused by differential regulation of protective mechanisms. Therefore, we compared intraindividual mRNA expression profiles between cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and normal C57BL/6 mice. Experiment Overall Design: 20 chips were analyzed. They represent 4 groups of 5 replicates each. Experiment Overall Design: The 4 groups are cardiac (LV) and skeletal muscle of normal and dysferlin deficient mice. Experiment Overall Design: Tissues from normal mice are the controls in comparison to tissues of dysferlin deficient mice.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Genome wide expression study of the effect of single stranded RNA (ssRNA) in A/JOlaHsd (WT), A/J and A/J-MyD88 deficient mice. The hypothesis for this study was that endogenous TLR ligands released from the leaking dysferlin-deficient muscle fibers engage TLRs on muscle and immune cells and contribute to disease progression.These data point to a clear role for the TLR pathway in the pathogenesis of dysferlin deficiency.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:Comparative analysis of gene expression levels from hindlimb muscle tissue from 8 week old mouse models for muscular dystrophy. We have used mouse models with dystrophin-, sarcoglycan-, sarcospan-, or dysferlin-deficiency. Keywords = muscular dystrophy