Project description:Investigation of whole genome gene expression level changes in Xylella fastidiosa 9a5c biofilm, submitted to treatments with sub inhibitory and inhibitory concentrations of copper and tetracycline. A study of Xylella fastidiosa 9a5c was done using total RNA recovered from biofilm bacterial cells submitted to 3 or 7mM of CuSO4 or 100 or 800 µg/ml of tetracycline. Each chip measures the expression level of 2832 genes from Xylella fastidiosa 9a5c with thirteen 60-mer probe pairs (PM/MM) per gene, with five-fold technical redundancy.
Project description:Investigation of whole genome gene expression level changes in Xylella fastidiosa 9a5c biofilm, submitted to treatments with sub inhibitory and inhibitory concentrations of copper and tetracycline.
Project description:This is the study of the Heat Shock response of phytopathogenic bacteria Xylella fastidiosa. This series keeps the 25 minutes 40oC stimulus response (Aug 2005). Keywords: stress response; heat shock response
Project description:Investigation of whole genome gene expression level changes in Xylella fastidiosa grown in minimal media XFM and XFM supplied with pectin or glucan (Host polysaccharides) , compared to cell grown in the complex media PWG. The cells grown in the minimal medium XFM supplied with host polysaccharides specially pectin are transmissible by the insect vector when delivered to the vector through artificial diet system. This does not happen with cells grown in the complex media. 4 (4 plex chips) study using total RNA recovered from 4 independents replicates for Xylella fastidiosa grown on PWG, XFM, XFM-glucan and XFM-pectin.
Project description:To investigate the role(s) of a cold shock protein homolog (Csp1) in plant pathogenic bacteria Xylella fastidiosa, we compared transcriptome profiles between wild type and a csp1 deletion mutant (Δcsp1) using long read Nanopore RNA sequencing.
Project description:Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), causing significant yield losses in economically important Mediterranean crops. Almond leaf scorch (ALS) is currently one of the most relevant diseases observed in Spain, and no cure has been found to be effective for this disease. In previous reports, the peptide BP178 has shown a strong bactericidal activity in vitro against X. fastidiosa and to other plant pathogens, and to trigger defense responses in tomato plants. In the present work, BP178 was applied by endotherapy to almond plants cv. Avijor using preventive and curative strategies. The capacity of BP178 to reduce the population levels of X. fastidiosa and to decrease disease symptoms, and its persistence over time were demonstrated under greenhouse conditions. The most effective treatment consisted of a combination of preventive and curative applications and the peptide was detected in the stem up to 60 days post-treatment. Priming plants with BP178 induced defense responses mainly through the salicylic acid pathway, but also overexpressed some genes of the jasmonic acid and ethylene pathways. It is concluded that the bifunctional peptide is a promising candidate to be further developed to manage ALS caused by X. fastidiosa.