Project description:A 50-mer oligonucleotide microarray was designed for large-scale gene expression analysis in Z. viviparus. To measure the expression of the probes and the corresponding assembled transcripts, the pool of mRNA used for the sequencing was hybridized.
Project description:BACKGROUND: The teleost Zoarces viviparus (eelpout) lives along the coasts of Northern Europe and has long been an established model organism for marine ecology and environmental monitoring. The scarce information about this species genome has however restrained the use of efficient molecular-level assays, such as gene expression microarrays. RESULTS: In the present study we present the first comprehensive characterization of the Zoarces viviparus liver transcriptome. From 400,000 reads generated by massively parallel pyrosequencing, more than 50,000 pieces of putative transcripts were assembled, annotated and functionally classified. The data was estimated to cover roughly 40% of the total transcriptome and homologues for about half of the genes of Gasterosteus aculeatus (stickleback) were identified. The sequence data was consequently used to design an oligonucleotide microarray for large-scale gene expression analysis. CONCLUSION: Our results show that one run using a Genome Sequencer FLX from 454 Life Science/Roche generates enough genomic information for adequate de novo assembly of a large number of genes in a higher vertebrate. The generated sequence data, including the validated microarray probes, are publicly available to promote genome-wide research in Zoarces viviparus.
Project description:A 50-mer oligonucleotide microarray was designed for large-scale gene expression analysis in Z. viviparus. To measure the expression of the probes and the corresponding assembled transcripts, the pool of mRNA used for the sequencing was hybridized. 1 Sample hybridized to microarray used to evaluate the transcript assembly described in Kristiansson et al 2009.
Project description:A broad biomarker approach was applied to study the effects of marine pollution along the Swedish west coast using the teleost eelpout (Zoarces viviparus) as the sentinel species. Measurements were performed on different biological levels, from the molecular to the organismal, including measurements of messenger RNA (mRNA), proteins, cellular and tissue changes, and reproductive success. Results revealed that eelpout captured in Stenungsund had significantly higher hepatic ethoxyresorufin O-deethylase activity, high levels of both cytochrome P4501A and diablo homolog mRNA, and high prevalence of dead larvae and nuclear damage in erythrocytes. Eelpout collected in Göteborg harbor displayed extensive macrovesicular steatosis, whereby the majority of hepatocytes were affected throughout the liver, which could indicate an effect on lipid metabolism. Results also indicate that eelpouts collected at polluted sites might have an affected immune system, with lower mRNA expression of genes involved in the innate immune system and a higher number of lymphocytes. Biomarker assessment also was performed on livers dissected from unborn eelpout larvae collected from the ovary of the females. No significant differences were noted, which might indicate that the larvae to some extent are protected from effects of environmental pollutants. In conclusion, usage of the selected set of biological markers, covering responses from gene to organism, has demonstrated site-specific biomarker patterns that provided a broad and comprehensive picture of the impact of environmental stressors.