Project description:Investigate the difference in gene expression in TGFbeta induced EMT in lung cancer cell line A549 in comparison to uninduced A549 cells.
Project description:Epithelial–mesenchymal transition (EMT) is a plastic process that converts epithelial cells into migratory and invasive cells. Accumulating evidence indicates that EMT is a key event for metastasis in several types of cancer, including non-small cell lung cancer (NSCLC). Especially, transforming growth factor-beta (TGF-beta) acts as a potent inducer of EMT and contributes to cancer progression. Emerging studies suggest that a metabolic reprograming is essential to acquire the EMT phenotype in cancer cells. However, a comprehensive understanding of metabolism in cancer EMT remains largely unexplored. Here, we analyzed metabolic changes during TGF-beta-induced EMT in NSCLC A549 cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). At the same time, we examined the expression of metabolic-related genes using microarray analysis.
Project description:The goal of this study is to characterize time course gene expression profiles during TGF-beta induced EMT. In particular, we aim to identify and characterize master transcription factors regulate the transition into partial-EMT state. A time series mRNA profile in A549 cells is generated from TGF-beta induced EMT samples during 0h,6h,12h,24h,36h,48h,72h and 96h by deep sequencing, in duplicate, using Illumina HiSeq 2500
Project description:Time Course of TGF-beta treatment of A549 lung adenocarcinoma cell line on Affymetrix HG_U133_plus_2 arrays; triplicate experiments. The goal of the experiment is to profile temporal gene expression changes during TGF-beta-induced epithelial-mesenchymal transition (EMT). During EMT cancer cells loose their epithelial specifc proteins and gain mesenchymal proteins to acquire migratory and invasive phenotype essential for metastasis. Human A549 lung adenocarcinoma cell line was treated with 5 ng/mL TGF-beta for 0, 0.5, 1, 2, 4, 8, 16, 24, and 72 h to induce EMT. The experiment was repeated 3 times. Samples were assayed using Affymetrix HG_U133_plus_2 arrays with 54675 probe-sets, using standard techniques. We provide the raw .CEL files and a supplementary Excel spreadsheet with log-transformed data and selected results from a statistical analysis. Experiment Overall Design: Human A549 lung adenocarcinoma cell line was treated with 5 ng/mL TGF-beta for 0, 0.5, 1, 2, 4, 8, 16, 24, and 72 h. The experiment was repeated 3 times. Samples were assayed using Affymetrix HG_U133_plus_2 arrays with 54675 probe-sets, using standard techniques. The 2 h sample of the third experiment was not run on an array due to poor RNA, so that only 26 arrays were run.
Project description:Time Course of TGF-beta treatment of A549 lung adenocarcinoma cell line on Affymetrix HG_U133_plus_2 arrays; triplicate experiments. The goal of the experiment is to profile temporal gene expression changes during TGF-beta-induced epithelial-mesenchymal transition (EMT). During EMT cancer cells loose their epithelial specifc proteins and gain mesenchymal proteins to acquire migratory and invasive phenotype essential for metastasis. Human A549 lung adenocarcinoma cell line was treated with 5 ng/mL TGF-beta for 0, 0.5, 1, 2, 4, 8, 16, 24, and 72 h to induce EMT. The experiment was repeated 3 times. Samples were assayed using Affymetrix HG_U133_plus_2 arrays with 54675 probe-sets, using standard techniques. We provide the raw .CEL files and a supplementary Excel spreadsheet with log-transformed data and selected results from a statistical analysis.
Project description:Our group is interested in epithelial-to-mesenchymal transition (EMT), in particular, TGF-beta induced EMT. TGF-beta signalling has been shown to be an important factor in the induction of EMT and it has been demonstrated that adding TGF-beta to epithelial cells in culture is a convenient way to study the process of EMT. In response to TGF-beta, Smad2 and 3 are activated, and form complexes with Smad4, which then regulate transcription of target genes through interactions with other DNA binding transcription factors. In the induction of EMT, the activated Smads mediate transcriptional regulation through three families of transcription factors, resulting in repression of epithelial marker gene expression and activation of mesenchymal gene expression (Xu J, et al. 2009) <br></br> Also investigated in this study is the role of H2A.Z in EMT. H2A.Z is an evolutionary conserved and a metazoan essential histone variant of the H2A class. Mice deficient in H2A.Z die during early development but the reason for this is unknown (Faast et al. 2001). Previously, our laboratory showed that the loss of H2A.Z in Xenpous laevis impaired cell movement required for the formation of the mesoderm and neural crest (Ridgway et al. 2004). Given that mesoderm formation is critically dependent upon EMT, we therefore wondered whether H2A.Z might be a chromatin regulator of EMT. We transfected MDCK cells with a lentiviral vector to express a construct encoding an shRNA targeting canine H2A.Z as we wanted to test the hypothesis that H2A.Z is involved in the maintenance of cellular identity and that its loss might trigger de-differentiation. <br></br> In order to investigate changes in histone variant H2A.Z occupancy associated with TGF-beta induced epithelial-to-mesenchymal transition (EMT) we performed H2A.Z ChIP-Seq in untreated and TGFb-treated MDCK cells. The MDCK cell line has been extensively used as a model system for EMT because they convert fully from the epithelial to the mesenchymal state in response to TGF-beta. <br></br>Please note that RNA-seq data generated in conjunction to this ChIP-seq data set were also deposited at ArrayExpress under accession number E-MTAB-5628 ( https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5628 ).
Project description:Transforming growth factor- (TGF-) signaling is a critical driver of epithelial–mesenchymal transition (EMT) and cancer progression. However, the regulatory roles of long non-coding RNAs (lncRNAs) in TGF--induced EMT and cancer progression are not well understood. Here, we identified an unannotated nuclear lncRNA LETS1 (LncRNA Enforcing TGF- Signaling 1) as a novel TGF-/SMAD target gene. Loss of LETS1 attenuates TGF--induced EMT, migration and extravasation in breast and lung cancer cells. LETS1 potentiates TGF-/SMAD signaling by stabilizing cell surface TGF- type I receptor (TRI) and thereby forms a positive feedback loop. Mechanistically, LETS1 inhibits TRI polyubiquitination by inducing the orphan nuclear receptor 4A1 (NR4A1) expression, a critical determinant of a destruction complex for inhibitory SMAD7. An unbiased interactome analysis identified the Nuclear Factor of Activated T Cells (NFAT5) as a protein partner of LETS1 to mediate activation of NR4A1 promoter. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA and elucidate the mechanism by which nuclear LETS1 potentiates TGF- receptor signaling.
Project description:Control, 0.5 mM extracellular ATP and 10 ng/ml TGF-beta were used to treated 5 million A549 lung cancer cells in vitro for 2, 6 and 12 hours. The untargeted metabolomics analysis was performed on the cell lysates. The main objective of the study was to determine changes in metabolite abundances in lung cancer after treatment with extracellular ATP and TGF-beta (a known EMT inducer).
Project description:Epithelial-to-mesenchymal transitions (EMT) play prominent roles during development, regeneration and tumor progression. EMTs are triggered by TGF-β, RAS and other signals that cooperatively induce the expression of master EMT transcription factors such as SNAIL. Here, we elucidate how the TGF-β and RAS pathways jointly trigger EMTs and tie them to broader developmental programs. We identify RAS response element binding protein 1 (RREB1) as a critical partner of TGF-β-activated SMAD transcription factors in driving SNAIL expression and EMT program in mammary gland epithelial cells.
Project description:mRNA-seq of A549 cells carrying out EMT-MET in the absence or presence of the EZH2 inhibitor GSK126. In addition, we carried out ChIP-seq of EZH2 in A549 cells upon TGF-B treatment.