Project description:Self-inhibition of pollen tubes plays a key role in SI, but the underlying mechanism in Camellia oleifera is poorly understood. Collection of secreted proteins from Camellia oleifera pollen tubes and ovaries for high-throughput sequencing.
Project description:Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. To gain insights into the genome-wide transcriptional regulation in lentil root and leaf under short- and long-term drought conditions, we performed RNA-seq on a drought-sensitive lentil cultivar (Lens culinaris Medik. cv. Sultan). After establishing drought conditions, lentil samples were subjected to de novo RNA-seq-based transcriptome analysis. The 207,076 gene transcripts were successfully constructed by de novo assembly from the sequences obtained from root, leaf, and stems. Differentially expressed gene (DEG) analysis on these transcripts indicated that period of drought stress had a greater impact on the transcriptional regulation in lentil root. The numbers of DEGs were 2915 under short-term drought stress while the numbers of DEGs were increased to 18,327 under long-term drought stress condition in the root. Further, Gene Ontology analysis revealed that the following biological processes were differentially regulated in response to long-term drought stress: protein phosphorylation, embryo development seed dormancy, DNA replication, and maintenance of root meristem identity. Additionally, DEGs, which play a role in circadian rhythm and photoreception, were downregulated suggesting that drought stress has a negative effect on the internal oscillators which may have detrimental consequences on plant growth and survival. Collectively, this study provides a detailed comparative transcriptome response of drought-sensitive lentil strain under short- and long-term drought conditions in root and leaf. Our finding suggests that not only the regulation of genes in leaves is important but also genes regulated in roots are important and need to be considered for improving drought tolerance in lentil.
Project description:We report the expression analysis of seed kernel in Camellia oleifera cultivars. In total 221 cultivars are sequenced by the Illumina sequencing experiments to obtain the gene expression profiles.
Project description:Genome-wide Transcriptional Analysis of Genes Associated with Drought Stress in Gossypium herbaceum root This experiment was designed to investigate the molecular mechanism associated with drought tolerance in root tissue of Gossypium herbaceum. The gene expression profiles of the root tissue using Affymetrix Cotton Genome Array were compared with drought tolerant and drought sensitive genotype of G.herbaceum under drought stress and watered condition. Many genes in various molecular function or biological processes were over- or under-represented between drought tolerant and sensitive genotype, suggesting various molecular mechanism and biochemical pathways are interlinked and tolerant genotype have developed multiple mechanisms as an adaptory behavior against drought stress. The transcriptional responses of root tissue in drought tolerant and sensitive genotype of Gossypium herbaceum under drought stress have been investigated. Physiological responses to drought stress, such as stomatal conductance, water use efficiency, root bending assay on different mannitiol concentration were also measured as indicators of imposed drought stress. Total RNA was isolated from root tissue from both genotype under drought stress and normal irrigated condition with three biological replicates
Project description:Genome-wide Transcriptional Analysis of Genes Associated with Drought Stress in Gossypium herbaceum root This experiment was designed to investigate the molecular mechanism associated with drought tolerance in root tissue of Gossypium herbaceum. The gene expression profiles of the root tissue using Affymetrix Cotton Genome Array were compared with drought tolerant and drought sensitive genotype of G.herbaceum under drought stress and watered condition. Many genes in various molecular function or biological processes were over- or under-represented between drought tolerant and sensitive genotype, suggesting various molecular mechanism and biochemical pathways are interlinked and tolerant genotype have developed multiple mechanisms as an adaptory behavior against drought stress.
Project description:To identify the important genetic resources of tea oil accumulation and quality formation in Camellia oleifera, an important woody edible oil tree native to Southern China, we have designed and customized an expression profile chip of C. oleifera with 8×60 K on the basis of transcriptome sequencing of multiple tissue samples including kernels, roots, and leaves from multiple varieties. we used the mcroarrays to determine the gene expressions in kernel development of C. oleifera elite varieties'Huashuo' , 'Huaxin' , 'Huajin' and 'Jujian' respectively. Microarray results indicated a total of 10710 gene probes showed stable differential expression in the comparation of August vs June and 9987 in the comparation of October vs August. PATHWAY enrichment results of DEGs indicated that the oil synthesis and accumulation occured in the whole kernel development of C. oleifera, but were mainly concentrated from the nutrition high-speed synthesis period to the seed mature period, which was consistent with the variation trend of oil content and fatty acide composition in C. oleifera kernel development.
Project description:The CAMTA1 mutant and Col-0 were studied under water and drought condition. The camta1 showed stunted primary root growth under osmotic stress. The expression analysis revealed drought recovery as major indicative pathway along with membrane and chloroplast related protein in camta1 under drought stress. Large number of positively regulated genes were related to osmotic balance, transporters, AP2 and ABA. We used Affymetrix expression analysis to validate the role of CAMTA1 under drought stress.
Project description:OsNAC6 is a stress responsive NAC transcription factor in rice known as a regulator for the transcriptional networks of the drought tolerance mechanisms. However, little is known about the associated molecular mechanisms for drought tolerance. Here, we identified OsNAC6-mediated root structural adaptation such as increased root number and root diameter that was sufficient to confer drought tolerance. Multiyear (5 years) drought field tests clearly demonstrated that OsNAC6 overexpression in roots produced higher grain yield under drought conditions. Genome-wide analyses revealed that OsNAC6 directly up-regulated 13 genes. Taken together, OsNAC6 is a valuable candidate for genetic engineering of drought-tolerant high-yielding crops.