Project description:Purpose: Construction of 3D zebrafish spatial transcriptomics data for studying the establishment of AP axis. Methods: We performed serial bulk RNA-seq data of zebrafish embryo at three development points. Using the published spatial transcriptomics data as references, we implemented Palette to infer spatial gene expression from bulk RNA-seq data and constructed 3D embryonic spatial transcriptomics. The constructed 3D transcriptomics data was then projected on zebrafish embryo images with 3D coordinates, establishing a spatial gene expression atlas named Danio rerio Asymmetrical Maps (DreAM). Results: DreAM provides a powerful platform for visualizing gene expression patterns on zebrafish morphology and investigating spatial cell-cell interactions. Conclusions: Our work used DreAM to explore the establishment of anteroposterior (AP) axis, and identified multiple morphogen gradients that played essential roles in determining cell AP positions. Finally, we difined a hox score, and comprehensively demonstrated the spatial collinearity of Hox genes at single-cell resolution during development.
Project description:Comparison of gene expression profiles from Danio rerio skin of wiltype (AB) and homozygote/heterozygote tert mutant phenotypes (AB tert(-/-), AB tert(+/)). The RNA-seq data comprises 3 groups. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of temporal small RNA gene expression profiles from Danio rerio brain. The smallRNA-seq data comprise 5 age groups at 6, 12, 24, 36 and 42 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of temporal small RNA gene expression profiles from Danio rerio skin. The smallRNA-seq data comprise 5 age groups at 6, 12, 24, 36 and 42 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)