Project description:Prior to the onset of autoimmune destruction, type 1 diabetic patients and an animal model thereof, the nonobese diabetic (NOD) mouse, show morphological and functional abnormalities in target organs, which may act as inciting events for leukocyte infiltration. To better understand these abnormalities, but without the complications associated with inflammatory infiltrates, we examined genes expressed in autoimmune target tissues (pancreas, submandibular glands, and lacrimal glands) of NOD/scid mice and of autoimmune-resistant C57BL6/scid mice. Experiment Overall Design: Pancreata (6 weeks old mice), submandibular (9 and 15 weeks), and lacrimal glands (15 weeks) from individual NOD-scid and B6-scid mice were isolated for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Prior to the onset of autoimmune destruction, type 1 diabetic patients and an animal model thereof, the nonobese diabetic (NOD) mouse, show morphological and functional abnormalities in target organs, which may act as inciting events for leukocyte infiltration. To better understand these abnormalities, but without the complications associated with inflammatory infiltrates, we examined genes expressed in autoimmune target tissues (pancreas, submandibular glands, and lacrimal glands) of NOD/scid mice and of autoimmune-resistant C57BL6/scid mice. Keywords: tissue expression, disease prone versus resistant strain comparison
Project description:NOD mice spontaneously develop lacrimal gland inflammation. NOD mice that lack TLR7 or that lack IFNAR1 are protected from developing lacrimal gland inflammation. RNA sequencing studies were performed to compare gene expression profiles in lacrimal glands from wild-type (WT) vs Tlr7 knockout or Ifnar1 knockout nonobese diabetic (NOD) mice to determine disease-relevant gene and pathway profiles upregulated in WT lacrimal glands in either a TLR7- or IFNAR1-dependent manner.
Project description:Our objective was to determine the nature and extent of androgen regulation of gene expression in the female lacrimal, meibomian,and submandibular glands, and to explore the degree to which this control is the same as in male glands. Keywords: Hormone treatment
Project description:Series includes pooled (n = 5 mice per biological replicate) samples from submandibular, sublingual, parotid, lacrimal, and meibomian glands of BALB/c mice. Both male and female samples were analyzed on CodeLink Mouse Uniset I Microarrays. Keywords: repeat sample
Project description:NOD mice were injected once a week with LTBR-Ig to block the LTBR-pathway, or with control monoclonal antibody MOPC from age 8 to 16 weeks old. Extraorbital lacrimal glands or submaxillary glands were dissected and total mRNA prepared. Each sample was either the combined lacrimals (2) from each mouse or individual salivary glands. There were 4 mice in each treatment group. Total mRNA was isolated and the quality was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Reverse transcription to prepare cDNA was performed using Invitrogen M-MLV system. The purpose was to determine changes in gene expression in glands due to blockade of the LTBR-pathway. Differential Gene Expression in NOD mouse lacrimal and salivary glands after LTBR-Ig treatment
Project description:Series includes pooled (n = 5 mice per biological replicate) samples from lacrimal, meibomian, and submandibular glands of male palcebo- and testosterone-treated BALB/c mice. All experiments were run in triplicate (pooled biological replicates) on CodeLink Mouse Uniset I Microarrays. Keywords: repeat sample