Project description:CDC25A is a critical target of checkpoint, and its overexpression is observed in various cancers. Here we demonstrate that in vivo levels of Cdc25A expression determine the efficiency of transformation and tumorigenesis. Transgenic expression of CDC25A in murine mammary glands cooperates with tumorigenesis induced by expression of ras or neu. CDC25A- overexpressing tumors display aggressiveness and genomic instability with changes in fragile chromosomal regions, including the region orthologous to human 1p32-36. Experiment Overall Design: Genomic DNA from a MMTV-cdc25a;MMTV-neu double transgenic murine cell line derived from a mammary tumor was compared to normal mammary tissue DNA from the parental strain. A total of two hybridizations were completed.
Project description:CDC25A is a critical target of checkpoint, and its overexpression is observed in various cancers. Here we demonstrate that in vivo levels of Cdc25A expression determine the efficiency of transformation and tumorigenesis. Transgenic expression of CDC25A in murine mammary glands cooperates with tumorigenesis induced by expression of ras or neu. CDC25A- overexpressing tumors display aggressiveness and genomic instability with changes in fragile chromosomal regions, including the region orthologous to human 1p32-36. Experiment Overall Design: Tumors from two mice from each of two conditions (MMTV-cdc25a;MMTV-neu and MMTV-neu) were analyzed in a dye swap experiment. A total of four hybridizations were performed.
Project description:CDC25A is a critical target of checkpoint, and its overexpression is observed in various cancers. Here we demonstrate that in vivo levels of Cdc25A expression determine the efficiency of transformation and tumorigenesis. Transgenic expression of CDC25A in murine mammary glands cooperates with tumorigenesis induced by expression of ras or neu. CDC25A- overexpressing tumors display aggressiveness and genomic instability with changes in fragile chromosomal regions, including the region orthologous to human 1p32-36. Keywords: genetic modification
Project description:CDC25A is a critical target of checkpoint, and its overexpression is observed in various cancers. Here we demonstrate that in vivo levels of Cdc25A expression determine the efficiency of transformation and tumorigenesis. Transgenic expression of CDC25A in murine mammary glands cooperates with tumorigenesis induced by expression of ras or neu. CDC25A- overexpressing tumors display aggressiveness and genomic instability with changes in fragile chromosomal regions, including the region orthologous to human 1p32-36. Keywords: genetic modification, aCGH
Project description:Murine models of mammary cancers have proven to be highly informative on numerous fronts including individual gene causation, microenvironmental analyses, and chemoprevention studies. The MMTV-Neu transgenic model of mammary cancer has proven to be a useful model and has been employed in several prevention studies. However, there are certain practical drawbacks to its use including long tumor latencies and a tendency to develop mutations in the transmembrane domain of Neu (unlike human HER2/Neu overexpressing breast cancers). Here we report modifications that were made in an attempt to optimize this mouse model for chemopreventive screening. First, homozygous MMTV-Neu and homozygous P53 KO mice were crossed to create a MMTV-Neu/P53+/- strain (which more closely approximates the genetic make-up of most HER2+ human patients). Second, to overcome the drawback of long tumor latencies, the mice were treated with DMBA for eight weeks. DMBA treatment greatly decreased the latency of mammary carcinomas in the MMTV-Neu mice although the resulting tumors remained histopathologically similar to those from MMTV-Neu control mice. Next, we examined gene expression in tumors derived from MMTV-Neu, MMTV-Neu/p53+/-, and DMBA treated mice. It was found that the characteristic MMTV-Neu tumor-defined expression pattern was still the most prevalent feature of all the MMTV-Neu tumors despite their being crossed to the p53 null allele, treated with DMBA, or both. However, tumors from the DMBA treated animals exhibited many unique gene expression changes including the high expression of stress response, defense, and inflammation genes. Finally, we demonstrated that the RXR agonists UAB30 and Targretin, both inhibited mammary cancer formation in MMTV-Neu mice, including those treated with DMBA. These results demonstrate the potential utility of this murine model for additional chemoprevention studies.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.