Project description:N2 young adult animals were analyzed four hours after exposure to wild-type Candida albicans DAY185, heat-killed C. albicans DAY185 and heat-killed Escherichia coli OP50, all on Brain Heart Infusion (BHI) agar. It was necessary to use heat-killed E. coli OP50 as a control for these experiments because live E. coli OP50 (the normal nematode food source) is pathogenic to nematodes on BHI agar. These data identify the C. elegans genes that are differentially regulated during nematode infection with a human fungal pathogen.
Project description:Given the risk of Candida albicans overgrowth in the gut, novel complementary therapies should be developed to reduce fungal dominancy. This study highlights the antifungal characteristics of a Bacillus subtilis-derived secondary metabolite, surfactin with high potential against C. albicans. Surfactin inhibited the growth of C. albicans following a 1-hour exposure, in addition to reduced adhesion and morphogenesis. Specifically, surfactin did not affect the level of reactive oxygen species but increased the level of reduced glutathione. Surprisingly, ethanol production was increased following 2 hours of surfactin exposure. Surfactin treatment caused a significant reduction in intracellular iron, manganese and zinc content compared to control cells, whereas the level of copper was not affected. Alongside these physiological properties, surfactin also enhanced fluconazole efficacy. To gain detailed insights into the surfactin-related effects on C. albicans, genome-wide gene transcription analysis was performed. Surfactin treatment resulted in 1390 differentially expressed genes according to total transcriptome sequencing (RNA-Seq). Of these, 773 and 617 genes with at least a 1.5-fold increase or decrease in transcription, respectively, were selected for detailed investigation. Several genes involved in morphogenesis or related to metabolism (e.g., glycolysis, ethanol and fatty acid biosynthesis) were down-regulated. Moreover, surfactin decreased the expression of ERG1, ERG3, ERG9, ERG10 and ERG11 involved in ergosterol synthesis, whereas genes associated with ribosome biogenesis and iron metabolism and drug transport-related genes were up-regulated. Our data demonstrate that surfactin significantly influences the physiology and gene transcription of C. albicans, and could contribute to the development of a novel innovative complementary therapy.
Project description:To elucidate the impact of IFU5 in Candida albicans, genome wide transcription profiling was performed in ifu5?/? mutant strain. Wild type and mutant cells were grown for 5 hours and RNA extracted from these cultures, followed by microarray profiling. Expression of six genes (EFG1, ALS3, SOD3, BMT4, COX2, NAD1) was validated by qPCR.
Project description:To infer transcriptional networks of nitrogen utilization , Candida albicans was exposed to nitrogen starvation for four hours and then offered arginine or BSA as sole nitrogen source. Time-series transcription data was obtained from both the starvation and the feeding periods, and the response to different nitrogen availability was used for network modelling with selected genes.
Project description:Candida albicans, a ubiquitous opportunistic fungal pathogen, plays a pivotal role in human health and disease. As a commensal organism, it normally resides harmlessly within the human microbiota. However, under certain conditions, C. albicans can transition into a pathogenic state, leading to various infections collectively known as candidiasis. With the increasing prevalence of immunocompromised individuals and the widespread use of invasive medical procedures, candidiasis has become a significant public health concern. The emergence of drug-resistant strains further complicates treatment options, highlighting the urgent need for alternative therapeutic strategies. Antifungal peptides (AFPs) have gained considerable attention as potential candidates for combating Candida spp. infections. These naturally occurring peptides possess broad-spectrum antimicrobial activity, including specific efficacy against C. albicans. AFPs exhibit several advantageous properties, such as rapid killing kinetics, low propensity for resistance development, and diverse mechanisms of action, making them promising alternatives to conventional antifungal agents. In recent years, extensive research has focused on discovering and developing novel AFPs with improved efficacy and selectivity against Candida species. Advances in biotechnology and synthetic peptide design have enabled the modification and optimization of natural peptides, enhancing their stability, bioavailability, and therapeutic potential. Nevertheless, several challenges must be addressed before AFPs can be widely implemented in clinical practice. These include optimizing peptide stability, enhancing delivery methods, overcoming potential toxicity concerns, and conducting comprehensive preclinical and clinical studies. This commentary presents a short overview of candidemia and AFP; articles and reviews published in the last 10 years were searched on The National Library of Medicine (National Center for Biotechnology Information-NIH-PubMed). The terms used were C. albicans infections, antimicrobial peptides, antifungal peptides, antifungal peptides mechanisms of action, candidemia treatments and guidelines, synthetic peptides and their challenges, and antimicrobial peptides in clinical trials as the main ones. Older publications were cited if they brought some relevant concept or helped to bring a perspective into our narrative. Articles older than 20 years and those that appeared in PubMed but did not match our goal to bring updated information about using antifungal peptides as an alternative to C. albicans infections were not considered.