Project description:Candida albicans is exposed to a different host environment during different site of infection. Thus, different virulence factors may be active during differenttypes of infection. However,little is known about the C. albicans genes that are required for the initiation and maintenance of candidiasis. To identify potential virulence factors relevant to hematogenously disseminated candidiasis, we determined the transcriptional response of C. albicans to human umbilical vein endothelial cells (HUVECs) in vitro. Keywords: cell interaction
Project description:Candida albicans is exposed to a different host environment during different site of infection. Thus, different virulence factors may be active during differenttypes of infection. However,little is known about the C. albicans genes that are required for the initiation and maintenance of candidiasis. To identify potential virulence factors relevant to hematogenously disseminated candidiasis, we determined the transcriptional response of C. albicans to human umbilical vein endothelial cells (HUVECs) in vitro. Keywords: cell interaction Two different Candida albicans strains, CAI4-URA and a clinical isolate 36082, were used to identify the transcriptional response of C. albicans to HUVECs. The strains were incubated with either the HUVECs or bare plastic for 45, 90, and 180 min. C. albicans RNA was extracted and the transcriptional profile of these organisms was analyzed using the C. albicans oligonucleotide microarray. The transcriptional response to HUVECs was compared to that to bare plastic as a control condition. Each time point contains six biological replicates, three of which are from each C. albicans strain.
Project description:Transcriptional profiling of Candida albicans cells comparing control untreated C. albicans cells with sulfite-treated C. albicans cells. Sulfite is a toxic molecule that C. albicans encounters in its human host. Both wild type and ∆zcf2 mutant cells were used. The goal was to determine the effects of sulfite on C. albicans gene expression, and to determine which of the genes areZcf2-depedent.
Project description:Candida albicans is exposed to a different host environment during oropharyngeal candidiasis (OPC) compared to hematogenously disseminated candidiasis. Thus, different virulence factors may be active during these two types of infection. However,little is known about the C. albicans genes that are required for the initiation and maintenance of OPC. To identify potential virulence factors relevant to this disease, we determined the transcriptional response of C. albicans to oral epithelial cells in vitro. Keywords: cell interaction Two different Candida albicans strains, CAI4-URA and a clinical isolate 7392, were used to identify the transcriptional response of C. albicans to oral epithelial cells. The strains were incubated with either the FaDu oral epithelial cell line or bare plastic for 45, 90, and 180 min. C. albicans RNA was extracted and the transcriptional profile of these organisms was analyzed using the C. albicans oligonucleotide microarray. The transcriptional response to Fadu cells was compared to that to bare plastic as a control condition. Each time point contains six biological replicates, three of which are from each C. albicans strain.
Project description:Transcriptional profiling of Candida albicans SC5314 comparing C. albicans grown in RPMI1640 or in RPMI1640 with 100ug/ml AAT. Goal was to determine the effects of AAT on global C. albicans gene expression.
Project description:Candida albicans is exposed to a different host environment during oropharyngeal candidiasis (OPC) compared to hematogenously disseminated candidiasis. Thus, different virulence factors may be active during these two types of infection. However,little is known about the C. albicans genes that are required for the initiation and maintenance of OPC. To identify potential virulence factors relevant to this disease, we determined the transcriptional response of C. albicans to oral epithelial cells in vitro. Keywords: cell interaction