Project description:Sulfur mustard (SM) is a potent alkylating agent. We are developing medical countermeasures to reduce the injury caused by SM exposure. Screening in the mouse ear vesicant model has identified three effective compounds: dimercaprol (British anti-lewisite), indomethacin, and octyl homovanillamide (OHV). To identify gene expression changes that correlate with compound efficacy we used oligonucleotide microarrays to compare gene expression profiles in vehicle-exposed skin, SM-exposed skin, and skin pretreated with each compound before SM exposure. Mice were topically exposed on the inner surface of the right ear to SM alone or pretreated for 15 min with one of the compounds and then exposed to SM. Left ears were vehicle-exposed. Ear tissue was harvested 24 hr later for ear weight determination (an endpoint indicating compound efficacy). The exposure groups were: methylene chloride (sulfur mustard vehicle); ethanol (drug vehicle); 0.08 mg sulfur mustard; 6.25 mg dimercaprol 15 min before 0.08 mg sulfur mustard; 1.34 mg indomethacin 15 min before 0.08 mg sulfur mustard; 0.6 mg octylhomovanillamide 15 min before 0.08 mg sulfur mustard; 6.25 mg dimercaprol alone; 1.34 mg indomethacin alone; 0.6 mg octylhomovanillamide alone. RNA was extracted from the tissues and used to generate oligonucleotide microarray probes. Principal component analysis of the gene expression data revealed partitioning of the samples based on drug treatment and SM exposure. Vehicle-exposed mouse ears clustered away from the other treatment groups. SM-exposed mouse ears pretreated with dimercaprol or OHV clustered more closely with vehicle-exposed ears, while SM-exposed mouse ears pretreated with indomethacin clustered more closely with SM-exposed ears. This clustering of the samples is supported by the ear weight data, in which the indomethacin group has ear weights closer to the SM-exposed group, whereas the dimercaprol and OHV groups have ear weights closer to the vehicle-exposed group. Correlation coefficients were calculated for each gene based on the correlation between gene expression level and ear weight. These data provide the basis for understanding what gene expression changes are important in the development of effective SM medical countermeasures. Keywords: ordered
Project description:We implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. Gene expression analysis of Xenopus laevis juvenile inner ear tissue. Inner ear RNA isolated from three groups of 5-10 juvenile X. laevis. Each biological replicate represents pooled inner ear RNA from 10-19 inner ears.
Project description:Spade/Spade mutant develop the spontaneous progressive atopic dermatitis like skin inflammation at around 8-10 weeks after birth. In order to detect the pre-symptomatic events that occur in their ear tissue, we have sampled RNA from the whole ear tissue and identified the differentially expressed genes with twofolds difference in comparison with littermate wildtype ear tissue RNA samples. RNA from ear tissue was isolated using an RNeasy Fibrous Tissue Kit (Qiagen) and microarray analysis was performed using GeneChip mouse genome 430_2.0 array (Affymetrix). The data were analyzed by GeneSpring GX (Agilent Technologies). The data were further analyzed by using packages in R and Bioconductor(48). Per chip normalization of datasets was performed by GCRMA package. An average intensity of two independent of duplicate for each week-wise (second-, fourth-, sixth-week) and mixture dataset was adopted in differential gene expression analysis. The differential genes were identified based on the following criteria: (i) twofold changes between wild-type and Spade (ii) false discovery rate (FDR) calculated by RankProd package with permutation number 1000 (49) for week-wise (FDR<0.05) and mixture (FDR<0.001) datasets.
Project description:Spade/Spade mutant develop the spontaneous progressive atopic dermatitis like skin inflammation at around 8-10 weeks after birth. In order to detect the pre-symptomatic events that occur in their ear tissue, we have sampled RNA from the whole ear tissue and identified the differentially expressed genes with twofolds difference in comparison with littermate wildtype ear tissue RNA samples.
Project description:The inner ear in mammals is derived from a simple ectodermal thickening called the otic placode. Through a series of complex morphological changes, the placode forms the mature inner ear comprising of the auditory organ (cochlea) and the vestibular/balance organs (utricle, saccule, and three semi-circular canals). The vast majority of genes known to be involved during inner ear development have been found through mutational screens or by chance. To identify genes that can serve as novel candidates required for inner ear development, and also candidate genes for uncloned human deafnesses, inner ear tissues from mouse embryos from E9 to E15 were microdissected and expression-profiled at half-day intervals. Also profiled was the non-inner ear mesenchymal tissue surrounding the inner ear tissue. Various patterns of gene expression were identified, and significant biological pathways that these genes represented were identified. Also identified were mouse genes whose human orthologs are located within uncloned non-syndromic deafness intervals, thus serving as candidates for sequence analysis. Experiment Overall Design: Inner ear tissues from E9 to E15 were microdissected at half-day intervals. E9 is the earliest stage when the otic placode is clearly visible and able to be microdissected cleanly. E15 is the stage when all the organs of the inner ear have become established, as have the sensory hair and non-sensory support cells within those organs. For each of the stages from E9 to E10, whole inner ears were profiled. For each of the stages from E10.5 to E12, the primordial cochlear and vestibular organs were profiled separately. For each of the stages from E12.5 to E15, the cochlea and the saccule were profiled separately, whereas the utricle and the three ampullae were combined and profiled together. Any given tissue from any given stage was a collection of anywhere between 4 to 17 identical tissues, and was obtained in duplicate (i.e. from different litters). Hence, a total of 58 inner ear samples were obtained. Moreover, non-inner ear tissue found in the immediate vicinity of inner ear tissue was also obtained and profiled. Specifically, all non-inner ear tissue from E9 was profiled in duplicate. Non-inner ear tissue from E9.5 to E10.5 was pooled and profiled together (in duplicate), whereas that from E11 to E15 was pooled and profiled together (also in duplicate). Therefore, a total of 6 non-inner samples were obtained.
Project description:The inner ear in mammals is derived from a simple ectodermal thickening called the otic placode. Through a series of complex morphological changes, the placode forms the mature inner ear comprising of the auditory organ (cochlea) and the vestibular/balance organs (utricle, saccule, and three semi-circular canals). The vast majority of genes known to be involved during inner ear development have been found through mutational screens or by chance. To identify genes that can serve as novel candidates required for inner ear development, and also candidate genes for uncloned human deafnesses, inner ear tissues from mouse embryos from E9 to E15 were microdissected and expression-profiled at half-day intervals. Also profiled was the non-inner ear mesenchymal tissue surrounding the inner ear tissue. Various patterns of gene expression were identified, and significant biological pathways that these genes represented were identified. Also identified were mouse genes whose human orthologs are located within uncloned non-syndromic deafness intervals, thus serving as candidates for sequence analysis. Keywords: Developmental timecourse