Project description:We characterized the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication.
Project description:To investigate the effects of glucocorticoids on the gene expression profiles in zebrafish, we performed a microarray-based transcriptomic study using larvae exposed to three representative glucocoriticoids at environmentally relevant high and low concentrations. Transcriptiomic profiel of developing zebrafish larvae exposed to dexamethasone, prednisolone or triamcinolone at 50 pM to 50 nM from 3 hours post-fertilisation to 5 days post-fertilisation were analyzed using G2519F Agilent Zebrafish Whole Genome Oligo Microarray Ver3.0, 4x44K.
Project description:Spermatozoa deliver a complex and environment sensitive pool of small non-coding RNAs (sncRNA) to the oocyte at fertilisation, which influences offspring development and adult phenotypic trajectories. Whether mature spermatozoa in the epididymis can directly sense the environment is still not fully understood. Here, we used two distinct paradigms of preconception acute High Fat Diet challenge to dissect epididymal vs spermatogenic contributions to the sperm sncRNA pool and offspring health. We show that epididymal spermatozoa, but not developing germ cells, are sensitive to the environment and identify mitochondrial tRNA fragments as sperm-born sensors. In human spermatozoa, we found mt-tsRNAs in linear association with BMI and showed that paternal overweight at conception is sufficient to double offspring obesity risk and compromise metabolic health. Using mouse genetics and metabolic phenotypic data, we show that alterations of mt-tsRNAs are downstream of mitochondrial dysfunction in mice. Most importantly, single embryo transcriptomics of genetically hybrid two-cell embryos demonstrated sperm-to-oocyte transfer of mt-tsRNAs at fertilisation and implied them in the control of early embryo metabolism. Our study supports the importance of paternal health at conception for offspring metabolism, propose mt-tsRNAs as sperm-born environmental effectors of paternal inheritance and demonstrate, for the first time in a physiological and unperturbed setting, father-to-offspring transfer of sperm mt-tsRNAs at fertilisation.
Project description:Bacterial anaerobic respiration using extracellular electron acceptor plays a predominant role in global biogeochemical cycles. However, the bacterial adaptive mechanisms to the toxic organic pollutant as the extracellular electron acceptor during anaerobic respiration is not clear, which limits us to optimize the strategies for the bioremediation of contaminated environment. Here, we report the physiological characteristics and the global gene expression of an ecologically successful bacterium Shewanella decolorationis S12 when using a typical toxic organic pollutant, amaranth, as the extracellular electron acceptor. Our results revealed that filamentous shift (the cells stretched to fiber-like shapes as long as 18 μm) occurred under amaranth stress. Persistent stress led to higher filamentous cell rate and decolorization ability in subcultural cells compared with parental strains. Additionally, the expression of genes involved in cell division, chemotaxi system, energy conservation, damage repair, and material transport in filamentous cells were significantly stimulated. The detailed roles of some genes with significantly elevated expressions in filamentous cells were identified by site-directed mutagenesis, such as the outer membrane porin genes ompA and ompW, the cytochrome C genes arpC and arpD, the global regulatory factor gene rpoS and methyl-accepting chemotaxis proteins genes SHD_2793 and SHD_0015. Finally, a conceptual model was proposed to help deepen our insights into both the bacterial survival strategy when toxic organics were present, and the mechanisms in which these toxic organics were biodegraded as the extracellular electron acceptors.
Project description:RNA-Seq comparing transcript expression in the brains of 3 dj-1-/- mutant zebrafish and 3 wild type siblings at 16 weeks post fertilisation.