Project description:Mitochondrial oxidative function is tightly controlled to maintain energy homeostasis in response to nutrient and hormonal signals. An important cellular component in the energy sensing response is the target of rapamycin (TOR) kinase pathway; however whether and how mTOR controls mitochondrial oxidative activity is unknown. Here, we show that mTOR kinase activity stimulates mitochondrial gene expression and oxidative function. In skeletal muscle cells and TSC2-/- MEFs, the mTOR inhibitor rapamycin largely decreased gene expression of mitochondrial transcriptional regulators such as PGC-1alpha and the transcription factors ERRalpha and NRFs. As a consequence, mitochondrial gene expression and oxygen consumption were reduced upon mTOR inhibition. Using computational genomics, we identified the transcription factor YY1 as a common target of mTOR and PGC-1alpha that controls mitochondrial gene expression. Inhibition of mTOR resulted in a failure of YY1 to interact and be coactivated by PGC-1alpha. Notably, knock-down of YY1 in skeletal muscle cells caused a significant decrease in mRNAs of mitochondrial regulators and mitochondrial genes that resulted in a decrease in respiration. Moreover, YY1 was required for rapamycin-dependent repression of mitochondrial genes. Thus, we have identified a novel mechanism in which a nutrient sensor (mTOR) balances energy metabolism via transcriptional control of mitochondrial oxidative function. These results have important implications for our understanding of how these pathways might be altered in metabolic diseases and cancer. Experiment Overall Design: Using Affymetrix MOE430 v2 gene chips, biological triplicates of each condition were analyzed: vehicle-treated, rapamycin-treated, gfp-infected, and pgc-1alpha-infected resulting in a total of 12 samples. Experiment Overall Design: Data were analyzed by RMA (with default settings) in BioConductor 1.2 -- one batch for the Rapamycin vs. Vehicle, and another batch for the PGC vs GFP.
Project description:Mitochondrial oxidative function is tightly controlled to maintain energy homeostasis in response to nutrient and hormonal signals. An important cellular component in the energy sensing response is the target of rapamycin (TOR) kinase pathway; however whether and how mTOR controls mitochondrial oxidative activity is unknown. Here, we show that mTOR kinase activity stimulates mitochondrial gene expression and oxidative function. In skeletal muscle cells and TSC2-/- MEFs, the mTOR inhibitor rapamycin largely decreased gene expression of mitochondrial transcriptional regulators such as PGC-1alpha and the transcription factors ERRalpha and NRFs. As a consequence, mitochondrial gene expression and oxygen consumption were reduced upon mTOR inhibition. Using computational genomics, we identified the transcription factor YY1 as a common target of mTOR and PGC-1alpha that controls mitochondrial gene expression. Inhibition of mTOR resulted in a failure of YY1 to interact and be coactivated by PGC-1alpha. Notably, knock-down of YY1 in skeletal muscle cells caused a significant decrease in mRNAs of mitochondrial regulators and mitochondrial genes that resulted in a decrease in respiration. Moreover, YY1 was required for rapamycin-dependent repression of mitochondrial genes. Thus, we have identified a novel mechanism in which a nutrient sensor (mTOR) balances energy metabolism via transcriptional control of mitochondrial oxidative function. These results have important implications for our understanding of how these pathways might be altered in metabolic diseases and cancer. Keywords: comparative genomics, drug treatment response
Project description:PGC-1alpha; is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha; are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta; is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1α-independent manner. Despite having reduced mitochondrial function, PGC-1alpha; null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha; in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.
Project description:Mitochondria play an essential role in the ability of brown fat to generate heat, and the PGC-1 coactivators control several aspects of mitochondrial biogenesis. To investigate their specific roles in brown fat cells, we generated immortal preadipocyte lines from the brown adipose tissue of mice lacking PGC-1±. We could then efficiently knockdown PGC-1β expression by shRNA expression. Loss of PGC-1± did not alter brown fat differentiation but severely reduced the induction of thermogenic genes. Cells deficient in either PGC-1α or PGC-1β coactivators showed a small decrease in the differentiation-dependant program of mitochondrial biogenesis and respiration; however, this increase in mitochondrial number and function was totally abolished during brown fat differentiation when both PGC-1± and PGC-1 were deficient. These data show that PGC-1± is essential for brown fat thermogenesis but not brown fat differentiation, and the PGC-1 coactivators play an absolutely essential but complementary function in differentiation-induced mitochondrial biogenesis. Affymetrix microarray analysis of total RNA from wt, PGC-1± KO and PGC-1± KO; cells expressing an RNAi specific for PGC-1 knockdown was performed. Of the 461; mitochondrial genes analyzed, 181 were found to be at least 20% different between wt; and defective PGC-1± and β adipocytes (p < 0.05). More than 85% of these genes were downregulated in cells deficient for PGC-1alpha and PGC-1beta. Experiment Overall Design: Brown preadipocytes that were either WT, KO for PGC-1alpha, or KO for PGC-1alpha and deficient for PGC-1beta (knockdown through siRNA expression) were differentiated for seven days. RNA was made from biological replicates of the three different types of brown adipocytes (WT, KO expressing a control siRNA, KO expressing a siRNA specific for PGC-1beta knockdown).
Project description:The present study examines the impact of altering energy provision on mitochondrial biogenesis in muscle cells. C2C12 myoblasts were chronically treated with supraphysiological levels of sodium pyruvate for 72 hr. Treated cells exhibited increased mitochondrial protein expression, basal respiratory rate and maximal oxidative capacity. The increase in mitochondrial biogenesis was independent of increases in PGC-1alpha and PGC-1alpha mRNA expression. To further assess whether PGC-1alpha expression was necessary for pyruvate action, cells were infected with adenovirus containing shRNA for PGC-1alpha prior to treatment with pyruvate. Despite a 70% reduction in PGC-1alpha mRNA the effect of pyruvate was preserved. Furthermore, pyruvate induced mitochondrial biogenesis in primary myoblasts from PGC-1alpha null mice. These data suggest that regulation of mitochondrial biogenesis by pyruvate in myoblasts is independent of PGC-1alpha, suggesting the existence of a novel energy-sensing pathway regulating oxidative capacity. Keywords: basal state versus treatment at one time point
Project description:Title: Total Skeletal Muscle PGC-1 Deficiency Uncouples Mitochondrial Derangements from Fiber Type Determination and Insulin Sensitivity Abstract: Evidence is emerging that the PGC-1 coactivators serve a critical role in skeletal muscle metabolism, function, and disease. Mice with total PGC-1 deficiency in skeletal muscle (PGC-1α-/- βf/f/MLC-Cre mice) were generated and characterized. PGC-1α-/-βf/f/MLC-Cre mice exhibit a dramatic reduction in exercise performance compared to single PGC-1α- or PGC-1β-deficient mice and wild-type controls. The exercise phenotype of the PGC-1α-/-βf/f/MLC-Cre mice was associated with a marked diminution in muscle oxidative capacity and mitochondrial structural derangements consistent with fusion/fission and biogenic defects together with rapid depletion of muscle glycogen stores during exercise. Surprisingly, the skeletal muscle fiber type profile of the PGC-1α-/-βf/f/MLCCre mice was not significantly different than the wild-type mice. Moreover, insulin sensitivity and glucose tolerance were also not altered in the PGC-1α-/-βf/f/MLC-Cre mice. Taken together, we conclude that PGC-1 coactivators are necessary for the oxidative and mitochondrial programs of skeletal muscle but are dispensable for fundamental fiber type determination and insulin sensitivity. RNA from PGC-1alpha-/- beta f/f/Mlc1fcre was obtained and gene expression pattern compared with PGC-1alpha -/-, PGC-1beta f/f, and PGC-1beta f/f/Mlc1fCre controls. Results file descriptions: 1. GSE23365_skfloxAKO_PPexcl_genesup_GEO-8-16-2010: This table contains genes that were upregulated ≥2.0 fold in gastrocnemius muscle from PGC-1alpha-/- - mice, PGC-1beta f/f/Mlc1fCre mice and PGC-1alpha-/- - beta f/f/Mlc1fCre mice. All groups are normalized to PGC-1beta f/f mice and values are expressed as mean±SEM. The column “description’ contains the gene name, and the column “ID” contains Agilent probe names. 2. GSE23365_skfloxAKO_PPexcl_genesdown_GEO-8-16-2010 This table contains genes that were downregulated ≤0.7 fold in gastrocnemius muscle from PGC-1alpha-/- - mice, PGC-1beta f/f/Mlc1fCre mice and PGC-1alpha-/- - beta f/f/Mlc1fCre mice. All groups are normalized to PGC-1beta f/f mice and values are expressed as mean±SEM. The column “description’ contains the gene name, and the column “ID” contains Agilent probe names.
Project description:Decreased mitochondrial mass and function in muscle of diabetic patients is associated with low PGC-1alpha, a transcriptional coactivator of the mitochondrial gene program. To investigate whether reduced PGC-1alpha and oxidative capacity in muscle directly contributes to age-related glucose intolerance, we compared the genetic signatures and metabolic profiles of aging mice lacking muscle PGC-1alpha. Microarray analysis revealed that a significant proportion of PGC-1alpha-dependent changes in gene expression overlapped with age-associated effects, and aging muscle and muscle lacking PGC-1alpha shared gene signatures of impaired electron transport chain activity and TGFbeta signalling. Gastrocnemius muscle mRNA from young (10 week old) and old (24 month old) wild-type and knock-out (muscle-specific PGC-1alpha, myogenin-cre) C57Bl/6N/6J/129 mice
Project description:Decreased mitochondrial mass and function in muscle of diabetic patients is associated with low PGC-1alpha, a transcriptional coactivator of the mitochondrial gene program. To investigate whether reduced PGC-1alpha and oxidative capacity in muscle directly contributes to age-related glucose intolerance, we compared the genetic signatures and metabolic profiles of aging mice lacking muscle PGC-1alpha. Microarray analysis revealed that a significant proportion of PGC-1alpha-dependent changes in gene expression overlapped with age-associated effects, and aging muscle and muscle lacking PGC-1alpha shared gene signatures of impaired electron transport chain activity and TGFbeta signalling.
Project description:Amyotrophic later sclerosis is a motor neuron disease accompanied by metabolic changes. PGC (PPAR gamma coactivator)-1alpha is a master regulator of mitochondrial biogenesis and function and of critical importance for all metabolically active tissues. PGC-1alpha is a genetic modifier of ALS. We used microarray analysis to identify PGC-1alpha target genes in the brain.
Project description:Mesenchymal stem cells (MSCs) are a multipotent cell type that can differentiate into non-hematopoietic cells, such as adipocytes. Adipocyte tissue is central to regulate energy balance. PGC-1 alpha controls several aspects of mitochondrial biogenesis. However, roles of PGC-1 alpha in brown fat differentiation of MSCs remain uncertain. To investigate roles of PGC-1 alpha in brown fat differentiation immortalized human MSCs were used for all experiments. The changes in genetic profiling between MSCs and PGC-1 alpha-expressing MSCs were analyzed by microarray analysis. The genetic profiling of PGC-1 alpha-expressing MSCs shows the significant increase of genes related to mitochondrial functions and lipid metabolism compared to that of MSCs. When expressed in MSCs, PGC-1 alpha activates a robust mitochondrial biogenesis and respiration. The expression of thermogenic markers, such as cytochrome C and complex II, was significantly increased in MSCs with treatment of adenovirus expressing PGC-1 alpha. Our microarray results also indicate that genetic pattern of PGC-1 alpha-expressing MSCs is very closed to that of adipose tissues. Bone marrow-derived MSCs were infected with Ad-GFP, or Ad-PGC-1? at a multiplicity of infection (m.o.i.) of 500 overnight.