Project description:19 paired human left ventricular apex samples were harvested at the time of implant of a left ventricular assist device (PRE) and at the time of explant (POST). The cohort included patients that were clinically classified as ischemic (I) showing evidence of coronary artery disease, non-ischemic (N) no evidence of coronary artery disease or acute Myocardial infarction (IM) myocardial infarction within 10 days of the implant. Tissue was processed and hybridized to the Affymetrix HG-U133A chip.
Project description:19 paired human left ventricular apex samples were harvested at the time of implant of a left ventricular assist device (PRE) and at the time of explant (POST). The cohort included patients that were clinically classified as "ischemic" (I) showing evidence of coronary artery disease, "non-ischemic" (N) no evidence of coronary artery disease or "acute Myocardial infarction" (IM) myocardial infarction within 10 days of the implant. Tissue was processed and hybridized to the Affymetrix HG-U133A chip. Keywords: other
Project description:The cellular and molecular aspects of post-infarct left-ventricle remodeling in presence of type-2 diabetes is poorly understood. In this study we have addressed the cellular and molecular aspects underlying post-infarct left-ventricle remodeling in type 2 diabetic (T2DM) mice using genome-wide mRNA-sequencing. Myocardial infarction was induced by ligating left-anterior descending artery (LAD) in 12-14 month old T2DM and control mice. Cardiac MRI was performed at baseline, day 7 and 14 post-LAD ligation. Blood and tissue samples were collected for biochemical and immunohistochemical, molecular biology analysis after sacrification at day 7 and 14. Genome-wide mRNA sequencing analysis was performed from left-ventricular tissues collected at day 7 post-LAD ligation. Mitochondrial dynamics, Leukocyte recruitment and Collagen I deposition were analyzed using electron microscopy, fluorescent assisted cell sorting (FACS) and fourier-transform infra-red (FTIR) spectroscopy from left ventricular tissues collected at day 7 and 14 post-LAD ligation. Cardiac ejection fraction (EF) and stroke volume (SV) were significantly reduced along with increased mortality in T2DM compared to controls. Ingenuity pathway analyses of differentially expressed genes were enriched for mitochondrial dysfunction, TCA cycle and fatty acid oxidation. Additionally, upstream transcription factor analysis showed inhibition of PGC1a, PGC1b, ESRRA, ESRRB and TFAM in infarcted myocardium of T2DM mice. Electron microscopy analysis showed an altered mitochondrial dynamics and cardiomyocyte death in ischemic myocardium of T2DM mice. Leukocytes exhibited an altered phenotype in ischemic myocardium of T2DM mice. Neovascularization was impaired and collagen deposition was increased in ischemic myocardium of T2DM mice. We conclude that an altered mitochondrial dynamics, cell death modalities, leukocyte phenotype, neovascularization responses and fibrosis may contribute to an increased mortality after myocardial infarction in T2DM. Modulation of mitochondrial dynamics and cardiomyocyte cell death modalities may offer a novel therapeutic target.
Project description:Interventions: Test group:Start low tidal volume ventilation with 6mL/kg;control group:Start conventional tidal volume ventilation with 10mL/kg
Primary outcome(s): Left ventricular myocardial performance index;Oxygenation index
Study Design: Case-Control study
Project description:Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as the result of high left ventricular (LV) diastolic pressure Continuous infusion of angiotensin II and phenylephrine (AngII/PE) demonstrates a strong HFpEF phenotype RNAseq data demonstrate activation of pathways leading to myocardial metabolic changes, activation of ECM deposition, microvascular rarefaction, and pressure and volume related myocardial stress
Project description:Hypoplastic left heart syndrome (HLHS) is characterized by underdevelopment of left sided structures including the ventricle, valves, and aorta1. Although the mechanisms of disease pathogenesis remain elusive due to a paucity of candidate genes and animal models, prevailing paradigm suggests that HLHS is a multigenic disease of co-occurring phenotypes2,3. Here, we report that zebrafish lacking two orthologs of the RNA binding protein RBFOX2, a gene previously linked to HLHS in humans4,5, display cardiovascular defects overlapping those in HLHS patients. In contrast to current models, we demonstrate that co-existing ventricular, valve, and aortic deficiencies in rbfox mutant zebrafish arise secondary to impaired myocardial function as all three phenotypes are rescued when Rbfox is expressed specifically in the myocardium. On a molecular and cellular level, we find diminished expression and alternative splicing of sarcomere and mitochondrial components in rbfox-deficient hearts that compromise sarcomere assembly and mitochondrial respiration, respectively. Injection of human RBFOX2 mRNA restores ventricular structure and function in rbfox mutant zebrafish, while HLHS-linked RBFOX2 variants fail to rescue. Taken together, our data suggest that mutations in RBFOX2 are causal for HLHS pathogenesis and provide a complimentary paradigm for HLHS emergence where co-existing ventricular, valve, and aortic deficiencies have a monogenic etiology caused by myocardial dysfunction.
Project description:Left ventricular myocardium was snap-frozen at time of cardiac transplantation from patients with advanced idiopathic or ischemic cardiomyopathy, or at time of harvest from unused donor heart that serve as a nonfailing control. No subjects received mechanical support devices. Keywords: disease state analysis (case:control)
Project description:Oxidative stress plays a key role in development and progression of cardiovascular diseases and it is correlated with left ventricular dysfunction and heart failure (HF). Oxidative environments lead to the formation of intra- and intermolecular disulfide bonds, as well as to plethora of other reversible and irreversible oxidative amino acid modifications, affecting the functionality of the proteins. Here we report that heart failure due to ischemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM) is correlated with increase in oxidative stress compared to non-failing control hearts, manifested through decreased GSH/GSSG ratio in failing heart tissue samples and adaptations of cardiac redox proteome which occur in correlation with two different heart pathologies.