Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing. Totally three sets of small RNAs, which were obtained under normal condition as well as salt and drought stress conditions
Project description:Purpose: The goal of our study is to compare two different ecotypes of Oryza sativa L., PHS-susceptible rice trait and PHS-resistant rice trait under three different maturation stages in rice seed embryo with profile of miRNA-seq. Methods: Oryza sativa. L miRNA profiles of two different ecotypes with 3 different maturation stages of rice seed embryo were generated by NGS, in duplicate, following Illumina NGS workflow. Results: We found the differentially expressed microRNAs between PHS-susceptible rice trait and PHS-resistant rice trait according to the three different seed maturation stages. Target transcripts of differentially expressed microRNAs have been predicted via psRNATarget web server, and a part of those target genes are likely to be regulated by microRNAs, affecting overall responses to heat stress and the regulation of seed dormancy during maturation. Conclusions: Our study represents the analysis of rice seed small RNAs, specifically microRNAs, under two different ecotypes, three different seed maturation stages in rice seed embryo. Our results show that microRNAs are involved in response to heat stress and the regulation of seed dormancy. This study will provide a foundation for understanding dynamics of seed dormancy during the seed development and overcoming pre-harvest sprouting.
Project description:Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. The combination of constitutive and acquired traits governs drought tolerance, which is crucial for maintaining crop productivity under drought. Drought affects protein synthesis, to uncover the translational landscape with response to drought stress in rice, polysome bound mRNA sequencing at anthesis stage in resistant APO and sensitive IR64 genotypes were performed. Our results demonstrate that drought tolerant genotype maintains higher transcripts bound to poly-ribosomes which facilitate higher protien synthesis which impacted on photosynthesis, spikelet fertility, seed filing and yield under drought stress. We identified many novel LncRNAs and relevant genes associated with translation which can play important role in manitaing grain protein content with drought tolerance.
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment To globally elucidate potential genes involved in drought and high-salinity stresses responses in rice, an oligomer microarray covering 37,132 genes including cDNA or EST supported and putative genes was applied to study the expression profiling of shoot, flag leaf, and panicle under drought or high-salinity treatment. Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates.
Project description:Climate change is affecting the unprecedented drought scenario and frequent occurrence of pathogen infection in rice. Simultaneous occurrence of these stresses could lead to more crop loss. Transcription response of genes involved in combined stress would provide relevant candidate gene to develop climate resilient rice. We report individual drought, Xoo infection and combined stress on rice. RNA Seq of contrasting genotypes BPT5204 and TN1 has revealed many candidate genes. A meta-analysis further filtered out some candidate genes which could be used for breeding programme. Several genes identified were already characterized by other groups for individual stress condition. However the genes involved in drought and pathogen infection could be further used for genetic manipulation studies in future.
Project description:Methionine sulfoxide reductases catalyze the reduction of MetSO back to the correct Met residue. Previously, the gene of Capsicum annuum methionine sulfoxide reductase B2 was isolated and CaMSRB2-overexpressing tomato shows enhanced growth, which may trigger increased resistance to the pathogens. To assess the role of this enzyme in rice, we generated transgenic lines under the control of the rice Rab21 (responsive to ABA protein 21) promoter with/without Bar marker gene. Several physiological tests such as MV and Fv/Fm, indicators of an oxidative stress-inducing agent and a potential maximal PSII quantum yield, respectively strongly suggested CaMSRB2 confers drought tolerance to rice. Using 3′-tiling microarray covering the whole rice genes, we carried out genome-wide expression analyses with CaMsrB2-transformed rice (Oryza sativa L. cv. ILMI). Rice was grown in port for six weeks and treated with drought by water withholding for two days.
Project description:Three rice major tissues, namely flag leaf, shoot and panicle, were involved in this study. Each tissue had two kinds stress treatment, drought and high salinity, in 3 different time courses. For drought treated samples, an additional water recovery was applied. Each experiment had three replicates. Keywords: Comparison of gene expression in three tissues with stress treatment and without treatment
Project description:Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage and harvested leaves for protein extraction and subsequent label-free shotgun proteomics. Gene ontology analysis revealed some differentially expressed proteins were induced by drought in all eight genotypes; we speculate that these play a universal role in drought tolerance. However, some highly genotype-specific patterns of response to drought suggest that some mechanisms of metabolic reprogramming are not universal. Such proteins had largely uncharacterized functions, making them biomarker candidates for drought tolerance screens.