Project description:DNA double strand breaks (DSBs) are a major source of mutations. Both non-homologous-end-joining (NHEJ) and microhomology-mediated-end-joining (MMEJ) DSB repair pathways are error prone and produce deletions, which can lead to cancer. DSBs also lead to epigenetic changes, including demethylation, which is involved in carcinogenesis. Of specific interest is the MMEJ repair pathway, as it requires methylation restoration around the break, as a result of the resection and formation of single stranded (ssDNA) intermediates. While, methylation patterns after homologous recombination (HR) have been partially studied, the methylation status after MMEJ and NHEJ remains poorly reported, and can be relevant for cancer. To study methylation patterns around DSB after NHEJ and MMEJ repair, we used targeted bisulfite-sequencing (BS-seq) to quantify methylation of dozens of single cell clones after induction of DSB by CRISPR. Each single cell clone was classified according to the sequence signature to a specific repair mechanism: NHEJ or MMEJ. Comparison of single cell clones after DSB to control cells, without DSB, demonstrated correct restoration of the methylation levels. No difference in methylation patterns was noticed when comparing NHEJ to MMEJ. Methylation levels in gene body, highly methylated CpGs (n=61, 4000 base pairs around DSB) and in low methylation CpGs (n=19), remained stable after both MMEJ and NHEJ. Gene body methylation persisted even on the background of DNMT3A R882C mutation, the most prevalent preleukemic mutation, in which the de novo methylation machinery is compromised. An exception observed in a single CpG site (ASXL1 995) which demonstrated elevated methylation rate after DSB repair only in the presence of WT DNMT3A. In summary, DNA methylation restoration demonstrated high fidelity after DSB both in methylated and unmethylated gene body, even in cases where DNA resections and deletions occurred.
Project description:DNA double strand breaks (DSBs) are a major source of mutations. Both non-homologous-end-joining (NHEJ) and microhomology-mediated-end-joining (MMEJ) DSB repair pathways are error prone and produce deletions, which can lead to cancer. DSBs also lead to epigenetic changes, including demethylation, which is involved in carcinogenesis. Of specific interest is the MMEJ repair pathway, as it requires methylation restoration around the break, as a result of the resection and formation of single stranded (ssDNA) intermediates. While, methylation patterns after homologous recombination (HR) have been partially studied, the methylation status after MMEJ and NHEJ remains poorly reported, and can be relevant for cancer. To study methylation patterns around DSB after NHEJ and MMEJ repair, we used targeted bisulfite-sequencing (BS-seq) to quantify methylation of dozens of single cell clones after induction of DSB by CRISPR. Each single cell clone was classified according to the sequence signature to a specific repair mechanism: NHEJ or MMEJ. Comparison of single cell clones after DSB to control cells, without DSB, demonstrated correct restoration of the methylation levels. No difference in methylation patterns was noticed when comparing NHEJ to MMEJ. Methylation levels in gene body, highly methylated CpGs (n=61, 4000 base pairs around DSB) and in low methylation CpGs (n=19), remained stable after both MMEJ and NHEJ. Gene body methylation persisted even on the background of DNMT3A R882C mutation, the most prevalent preleukemic mutation, in which the de novo methylation machinery is compromised. An exception observed in a single CpG site (ASXL1 995) which demonstrated elevated methylation rate after DSB repair only in the presence of WT DNMT3A. In summary, DNA methylation restoration demonstrated high fidelity after DSB both in methylated and unmethylated gene body, even in cases where DNA resections and deletions occurred.
Project description:Here we identify a novel class of small RNAs that are ~21-nucleotide in length and are produced from the sequences in the vicinity of DNA double strand break (DSB) sites in Arabidopsis and humans. We named them diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. diRNAs are recruited by Argonaute 2 (AGO2) to mediate DSB repair. In humans, knocking down Dicer or Ago2 causes a significant reduction in DSB repair. Our findings reveal a novel biological function for small RNAs in the DSB repair pathway. We propose that diRNAs may function as guide molecules for chromatin modifications or recruitment of repair complexes at DSB sites to facilitate repair.
Project description:Non-homologous end-joining (NHEJ) plays an important role in double-strand break (DSB) repair of DNA. Recent studies have shown that the error patterns of NHEJ are strongly biased by sequence context, but these studies were based on relatively few templates. To investigate this more thoroughly, we systematically profiled ~1.16 million independent mutational events resulting from CRISPR/Cas9-mediated cleavage and NHEJ-mediated DSB repair of 6,872 synthetic target sequences, introduced into a human cell line via lentiviral infection. We find that: 1) insertions are dominated by 1 bp events templated by sequence immediately upstream of the cleavage site, 2) deletions are predominantly associated with microhomology, and 3) targets exhibit variable but reproducible diversity with respect to the number and relative frequency of the mutational outcomes to which they give rise. From these data, we trained a model (Lindel) that uses local sequence context to predict the distribution of mutational outcomes. Exploiting the bias of NHEJ outcomes towards microhomology mediated events, we demonstrate the programming of deletion patterns by introducing microhomology to specific locations in the vicinity of the DSB site. We anticipate that our results will inform investigations of DSB repair mechanisms as well as the design of CRISPR/Cas9 experiments for diverse applications including genome-wide screens, gene therapy, lineage tracing and molecular recording.
Project description:Here we identify a novel class of small RNAs that are ~21-nucleotide in length and are produced from the sequences in the vicinity of DNA double strand break (DSB) sites in Arabidopsis and humans. We named them diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. diRNAs are recruited by Argonaute 2 (AGO2) to mediate DSB repair. In humans, knocking down Dicer or Ago2 causes a significant reduction in DSB repair. Our findings reveal a novel biological function for small RNAs in the DSB repair pathway. We propose that diRNAs may function as guide molecules for chromatin modifications or recruitment of repair complexes at DSB sites to facilitate repair. 28 samples from Arabidopsis thaliana in various genetic backgrounds and 5 samples from the human cells, small RNA sequencing
Project description:Repair of DNA double-strand break (DSB) is critical for the maintenance of genome integrity. We have previously shown that a class of DSB-induced small RNAs (diRNAs) facilitates homologous recombination (HR)-mediated DSB repair in Arabidopsis thaliana. Here we show that INVOLVED IN DE NOVO 2 (IDN2), a double-stranded RNA (dsRNA) binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA-binding ARGONAUTE 2 (AGO2) leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from ssDNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair.
Project description:Here we have developed a method that combines chromatin immunoprecipitation with next-generation sequencing (ChIP-Seq) and mathematical modeling to quantify RecA protein binding during the active repair of a single DSB in the chromosome of Escherichia coli. Examination of RecA binding during double-strand break repair in Escherichia coli
Project description:Recent observations show that the single-cell response of p53 to ionizing radiation (IR) is “digital” in that it is the number of oscillations rather than the amplitude of p53 that shows dependence on the radiation dose. We present a model of this phenomenon. In our model, double-strand break (DSB) sites induced by IR interact with a limiting pool of DNA repair proteins, forming DSB–protein complexes at DNA damage foci. The persisting complexes are sensed by ataxia telangiectasia mutated (ATM), a protein kinase that activates p53 once it is phosphorylated by DNA damage. The ATM-sensing module switches on or off the downstream p53 oscillator, consisting of a feedback loop formed by p53 and its negative regulator, Mdm2. In agreement with experiments, our simulations show that by assuming stochasticity in the initial number of DSBs and the DNA repair process, p53 and Mdm2 exhibit a coordinated oscillatory dynamics upon IR stimulation in single cells, with a stochastic number of oscillations whose mean increases with IR dose. The damped oscillations previously observed in cell populations can be explained as the aggregate behavior of single cell
Project description:DNA double-strand breaks (DSBs) are introduced in meiosis to initiate recombination and to generate crossovers, the reciprocal exchanges of genetic material between parental chromosomes. Here we present the first high-resolution map of meiotic DSBs in individual human genomes. Comparing DSB maps between individuals shows that along with DNA binding by PRDM9, additional factors dictate the efficiency of DSB formation. Furthermore, we find that in human males, the frequency of DSB formation is the primary determinant of crossover rate. Patterns of sequence polymorphisms around meiotic DSB hotspots provide evidence for both GC-biased gene conversion and for a mutagenic role of DSB repair and/or recombination. Finally, we provide compelling evidence that the aberrant repair of meiotic DSBs is a driver of human genomic disorders.