Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to sulfometuron methyl (oust XP) herbicide that inhibits acetolactate synthase (ALS) enzyme and thus disrupts branched chain amino acid biosynthesis. A number of genes related to amino acid, protein metabolism, growth, regulatory networks, respiratory pathways, stress, defense and secondary metabolism were altered. Experiment Overall Design: Surfectant (preference 0.25%) treated plants were used as carrier control group and EC50 concentration of sulfometuron was used as the herbicide treatment group. Each of the control and treatment group consisted of 3 biological replicates and each biological replicates comprised leaves from 10 individual plants. RNA was extracted at 24h post treatment to study the transcriptional alterations caused by the herbicide treatment.
Project description:Dicamba is an auxin-like herbicide that can stimulate the production of ethylene and ABA biosynthesis. The subsequent stomatal closure and build-up of reactive oxygen species is hypothesized to contribute to plant death. In order to further understand the herbicide dicamba's mode of action at the molecular level, we used microarrays to dissect global gene expression in Arabidopsis seedlings 10 hrs after dicamba treatment.
Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to glyphosate (Roundup Original) herbicde that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme and thus disrupts aromaticamino acid biosynthesis. Few genes related to defense and secondary metabolism were altered. Experiment Overall Design: Surfactant (preference 0.25%) treated plants were used as carrier control group and EC50 concentration of glyphosate was used as the herbicide treatment group. Each of the control and treatment group consisted of 3 biological replicates and each biological replicates comprised leaves from 10 individual plants. RNA was extracted at 24h post treatment to study the transcriptional alterations caused by the herbicide treatment.
Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to imidazolinone (Arsenal) herbicde that inhibits acetolactate synthase (ALS) enzyme and thus disrupts branched chain amino acid biosynthesis. A number of genes related to amino acid, protein metabolism, growth, regulatory networks, respiratory pathways, stress, defense and secondary metabolism were altered. Experiment Overall Design: Surfactant (preference 0.25%) treated plants were used as carrier control group and EC50 concentration of imidazolinone was used as the herbicide treatment group. Each of the control and treatment group consisted of 3 biological replicates and each biological replicates comprised leaves from 10 individual plants. RNA was extracted at 24h post treatment to study the transcriptional alterations caused by the herbicide treatment.
Project description:Dicamba is an auxin-like herbicide that can stimulate the production of ethylene and ABA biosynthesis. The subsequent stomatal closure and build-up of reactive oxygen species is hypothesized to contribute to plant death. In order to further understand the herbicide dicamba's mode of action at the molecular level, we used microarrays to dissect global gene expression in Arabidopsis seedlings 10 hrs after dicamba treatment. 4 day old Arabidopsis seedlings (a Columbia line containing a -800GSTF8::LUC reporter) were flooded with water or 7mM dicamba for 40 minutes before the treatment was poured off. Ten hours after the start of the treatment, whole seedlings were collected
Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to triazolopyrimidine (FirstRate) herbicde that inhibits acetolactate synthase (ALS) enzyme and thus disrupts branched chain amino acid biosynthesis. A number of genes related to amino acid, protein metabolism, growth, regulatory networks, respiratory pathways, stress, defense and secondary metabolism were altered. Experiment Overall Design: Surfactant (preference 0.25%) treated plants were used as carrier control group and EC50 concentration of triazolopyrimidine was used as the herbicide treatment group. Each of the control and treatment group consisted of 3 biological replicates and each biological replicates comprised leaves from 10 individual plants. RNA was extracted at 24h post treatment to study the transcriptional alterations caused by the herbicide treatment.
Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to primisulfuron (Beacon) herbicde that inhibits acetolactate synthase (ALS) enzyme and thus disrupts branmched chain amino acid biosynthesis. A number of genes related to amino acid, protein metabolism, growth, regulatory networks, respiratory pathways, stress, defense and secondary metabolism were altered. Experiment Overall Design: Surfectant (preference 0.25%) treated plants were used as carrier control group and EC50 concentration of primisulfuron was used as the herbicide treatment group. Each of the control and treatment group consisted of 3 biological replicates and each biological replicates comprised leaves from 10 individual plants. RNA was extracted at 24h post treatment to study the transcriptional alterations caused by the herbicide treatment.
Project description:The number and type of synthetic chemicals that are being produced worldwide continues to increase significantly. While these industrial chemicals provide numerous benefits, there is no doubt that some have potential to damage the environment and health. Toxicity must be evaluated and use must be carefully controlled and monitored in order to minimize potential damage. DNA microarray technology has become an important new technique in toxicology. We are using the yeast Saccharomyces cerevisiae as a model organism for toxicological study because it is a simple, fast-growing eukaryote that has been thoroughly characterized. In order to evaluate toxicity by newly synthesized or mixture chemicals, toxicity-induced gene expression alteration profiles by known chemicals should be collected. In our study, cells need to be exposed with same experimental cellular condition, semi lethal (IC50), respectively. In the case of round up (CAS; 40465-66-5), the exposure dose was decided as 1500 times dilution by growth curve with continuously diluted exposure. Roundup is the brand name of a systemic, broad-spectrum herbicide contains the active ingredient glyphosate. Glyphosate is classed as a moderately toxic herbicide and in EPA toxicity class III. // Genomic profile of roundup treatment of yeast using DNA microarray analysis: The herbicide Roundup, which contains glyphosate as the active ingredient, was first introduced in 1974 and has enjoyed widespread use in Japan and elsewhere in the world. Roundup-induced reactions occurring in the yeast Saccharomyces cerevisiae may have a predictive value for understanding responses in higher eukaryotes, and we applied yeast DNA microarray analysis for this purpose. Functional characterization of up-regulated open reading frames (ORFs) following Roundup treatment suggests that Roundup affects membrane structures and cellular organelles. Expression profiles induced by treatments with detergents, oils and hydrostatic pressure were similar to those following Roundup treatment based on cluster analysis. Glyphosate alone was not found to inhibit yeast growth at the concentration contained in the Roundup treatment used for microarray analysis. The toxicity of Roundup appeared to be due to detergent in the product. Keywords: stress response
Project description:This project aimed to investigate the effects of glyphosate-based herbicide Roundup LB Plus on bacteria. For this, ten environmental strains of Salmonella enterica were exposed to the increasing concentrations of Roundup over several passages to obtain Roundup-resistant mutants. Four stable re-sequenced resistant mutants and their respective ancestors were characterized by global proteomics in the presence and absence of sub-inhibitory (1/4xMIC) concentrations of the herbicide. By comparing the proteomes of the Roundup-challenged ancestors with constitutive non-challenged ancestors, it became possible to deepen the understanding of how Roundup stress affects naïve bacteria. Similarly, comparing Mutants versus Ancestors in the absence of Roundup allowed to understand how Roundup resistance constitutively affects bacterial physiology, while the comparison of Roundup-challenged mutants versus constitutive mutants helped improve the understanding of the inducible responses in the resistant background.
Project description:Using whole genome microarray (Affymetrix ATH1) we studied the transcriptional response of Arabidopsis thaliana to glyphosate (Roundup Original) herbicde that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme and thus disrupts aromaticamino acid biosynthesis. Few genes related to defense and secondary metabolism were altered. Keywords: 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibiting herbicide stress response