Project description:Traditional surgery plus radiotherapy or chemotherapy, existing targeted therapies failed to significantly improve the survival rate of recurrent endometrial cancer, so suggesting that mechanism of recurrence and progression that modulates in endometrial cancer is clinically important. Here, we show that GPER(G protein-coupled estrogen receptor 1) was binded to AMF, and the complex were translocation form plasma to cytoplasmic. Mechanistic investigations elucidated that interaction of AMF with GPER triggers phosphoinositide-3-kinase (PI3K) signaling activating and accelerating the ability of endometrial cancer cells growth. Furthermore, we found that AMF may contribute to GPER-mediated endometrial cancer progression using animal experiments and human histological experiments which be consistent with the above conclusions. On the basis of these evidences including invivo and invitro, our findings suggest that AMF–GPER interaction might be novel key molecular targets for therapeutic management of patients with endometrial cancer, whose disease were progression and recurrence.
Project description:Pteris cretica L var. nervosa is one of the dominent fern species at antimony mining area where arbuscular mycorrhizal fungi can be found as a symbiosis. The effect of AMF on fern exposed to long-term excessive Sb was pooly understood. The project applied this fern co-cultivting with or withour AMF under different concentration of Sb in soil for charicterising Sb phytomediation ability of it along with the effect by AMF symbiosis.
Project description:In terrestrial ecosystems plants take up phosphate predominantly via association with arbuscular mycorrhizal fungi (AMF). We discovered that the loss of responsiveness to AMF in the rice deletion mutant hebiba is encoded by the alpha/beta fold hydrolase, DWARF 14 LIKE (D14L), which is one of the 26 deleted genes. It is a component of an intracellular receptor complex involved in the detection of the smoke-compound karrikin. On the basis of the early and pronounced hebiba mutant phenotype, we hypothesized that functional D14L is required for the perception of AM fungi prior to contact. Germinated spore exudates of AMF activate pre-contact plant responses. Therefore, we used RNAseq to monitor the transcriptional changes of hebiba and wild type roots in response to germinated spore exudates, and also karrikin, over the first 24 hours post treatment. WT seedlings were treated with GSE, Karrikin or a mock and iho seedlings with GSE or a mock. Root material was collected for sequencing at 0, 3, 6, 9, 12 and 24 hours. This gave a total of 27 samples (WT+Mock: 6, WT+GSE: 5, WT+Karrikin:5, iho+Mock:6, iho+GSE: 5).
Project description:Physcomitrella patens gametophores were treated with exudates from the arbuscular mycorrhiza fungi (AMF) Rhizophagus irregularis (formerly known as Glomus intraradices) and Gigaspora margerita for one hour and 24 hours.
Project description:Traditional surgery plus radiotherapy or chemotherapy, existing targeted therapies failed to significantly improve the survival rate of recurrent endometrial cancer, so suggesting that mechanism of recurrence and progression that modulates in endometrial cancer is clinically important. Here, we show that GPER(G protein-coupled estrogen receptor 1) was binded to AMF, and the complex were translocation form plasma to cytoplasmic. Mechanistic investigations elucidated that interaction of AMF with GPER triggers phosphoinositide-3-kinase (PI3K) signaling activating and accelerating the ability of endometrial cancer cells growth. Furthermore, we found that AMF may contribute to GPER-mediated endometrial cancer progression using animal experiments and human histological experiments which be consistent with the above conclusions. On the basis of these evidences including invivo and invitro, our findings suggest that AMF–GPER interaction might be novel key molecular targets for therapeutic management of patients with endometrial cancer, whose disease were progression and recurrence.
Project description:we used single-cell RNA sequencing (scRNA-seq) and computational models to identify 13 skin cell types in Liaoning Cashmere Goats. We also analyzed the molecular changes by Cell Trajectory Analysis in the development process and revealed the maturation process in gene expression profile in Liaoning Cashmere Goats. Weighted gene co-expression network analysis (WGCNA) explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results showed different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify, and prove the differential expression in the coarse type and the fine type of Liaoning Cashmere Goats. Therefore, CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat secondary hair follicle dermal papilla cells, our research will provide new insights into the mechanism of cashmere growth and cashmere fineness regulation by cells.
Project description:Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile idiopathic arthritis (SJIA), and increasingly reported in association with severe lung disease (SJIA-LD) of unknown etiology. This study mechanistically defines the novel observation of pulmonary inflammation in the TLR9 mouse model of MAS that recapitulate key features of SJIA-LD, including IFNg activation. In acute MAS, lungs exhibit a mild but diffuse lymphocyte-predominant perivascular, interstitial inflammation with elevated IFNg, IFN-induced chemokines, and alveolar macrophage (AMf) expression of IFNg-induced genes. However, MAS resolution demonstrated AMf expansion and increased interstitial inflammation. AMf microarrays confirmed IFNg-induced proinflammatory polarization during acute MAS, which switches towards anti-inflammatory phenotype during MAS resolution. Interestingly, recurrent MAS increased alveolar inflammation, and reset polarization towards a pro-inflammatory state. Furthermore, in mice bearing macrophages insensitive to IFNg, both systemic feature of MAS and pulmonary inflammation were markedly attenuated. These findings demonstrate experimental MAS induces IFNg-driven pulmonary inflammation, and define this system for further study of and treatment validation in SJIA-LD. We used microarrays to study whole transcriptome analysis of alveolar macrophages in the TLR9 mouse model of MAS during both acute MAS and MAS resolution.
Project description:Intake of high-fat foods raises postprandial plasma triglycerides and inflammatory markers, which may depend on the type of fat ingested. Dairy products are commonly consumed, but not much is known about the impact of milk fat and the milk fat globule membrane on postprandial inflammation. Here, we aimed to study the effect of milk fat with and without milk fat globule membrane and vegetable blend fat on post-prandial inflammation, with a focus on blood monocyte gene expression. We performed a randomized, double-blind cross-over trial in middle-aged healthy male and female volunteers (BMI 22–27 kg/m2). The participants consumed a meal shake containing 95.5 g of fat consisting of either a vegetable fat blend (VEGE), anhydrous milk fat (AMF, without milk fat globule membrane), or cream (CREAM, containing milk fat globule membrane). Blood monocytes were collected at 0 and 6 hours postprandially and used for bulk RNA sequencing and ex vivo stimulation with LPS. Consumption of all three shakes significantly decreased the percentage of classical monocytes and increased the percentages of intermediate monocytes and non-classical monocytes. No differences in these measures were observed between shakes. Using a threshold of p < 0.01, 787 genes were differentially regulated postprandially between the three shakes. 89 genes were differentially regulated postprandially between AMF and VEGE, 373 genes between AMF and CREAM, and 667 genes between VEGE and CREAM, indicating that the effect of CREAM on monocyte gene expression was distinct from AMF and VEGE. Pathway analyses showed that VEGE significantly increased the expression of genes involved in inflammatory pathways, whereas this was less pronounced after AMF and not observed after CREAM. In addition, CREAM significantly down-regulated the expression of genes involved in energy metabolism-related pathways, such as glycolysis, TCA cycle, and oxidative phosphorylation, as well as HIF1 signaling. Compared to the consumption of an anhydrous milk fat without milk fat globule membrane and a vegetable fat blend, the consumption of cream with milk fat globule membrane downregulated inflammatory pathways in blood monocytes, thus suggesting a potential inflammation inhibitory effect of milk fat globule membrane.