Project description:we used single-cell RNA sequencing (scRNA-seq) and computational models to identify 13 skin cell types in Liaoning Cashmere Goats. We also analyzed the molecular changes by Cell Trajectory Analysis in the development process and revealed the maturation process in gene expression profile in Liaoning Cashmere Goats. Weighted gene co-expression network analysis (WGCNA) explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results showed different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify, and prove the differential expression in the coarse type and the fine type of Liaoning Cashmere Goats. Therefore, CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat secondary hair follicle dermal papilla cells, our research will provide new insights into the mechanism of cashmere growth and cashmere fineness regulation by cells.
2021-08-25 | GSE182474 | GEO
Project description:Swine wastewater Hebei ST
| PRJNA756734 | ENA
Project description:projects in Hebei Province 19226515D
Project description:Severe traumatic brain injury (sTBI) is a serious public health issue with high morbidity and mortality rates. Previous proteomic studies on sTBI have mainly focused on human cerebrospinal fluid and serum, as well as on brain protein changes in murine models. However, human proteomic data in sTBI brain is still needed. We used proteomics and bioinformatics strategies to investigate variations in protein expression in human brains after sTBI, using samples from the Department of Neurosurgery, Affiliated Hospital of Hebei University (Hebei, P.R. China). Our proteomics data identified 4031 proteins, of which 162 proteins were overexpressed and 5 proteins were downregulated. The biological pathways that showed significant changes in protein expression according to bioinformatics analysis were glial cell differentiation, complement activation, apolipoprotein catalysis in statin pathway, and the blood coagulation cascade. Western blot verification of protein changes in a subset of the available tissue samples showed results that were consistent with the proteomics data. This study is one of the first to investigate the whole proteome of human sTBI brains, and provides a characteristic signature and overall landscape of the sTBI brain proteome.