Project description:Artificial miRNA mediated knock-down ago18 transgenic lines [ago18(1), ago18(2)] showed developmentally compromised phenotype in both vegetative and reproductive tissues compared to wild-type control. We have performed small RNA seq to investigate underlying molecular mechanism and to reveal functional role of AGO18 in rice.
Project description:Transcriptional profiling of MIT knockdown plants. MIT is a mitochondrial Fe transporter essential for rice growth and development. The goal was to determine the effects of MIT on global rice gene expression.
Project description:Artificial miRNA mediated knock-down ago18 transgenic lines [ago18(1), ago18(2)] showed developmentally compromised phenotype in both vegetative and reproductive tissues compared to wild-type control. We have performed RNA seq to investigate underlying molecular mechanism and to reveal functional role of AGO18 in rice.
Project description:Here, we present OryzaPG-DB, a rice proteome database based on shotgun proteogenomics, which incorporates the genomic features of experimental shotgun proteomics data. This version of the database was created from the results of 27 nanoLC-MS/MS runs on a hybrid ion trap-orbitrap mass spectrometer, which offers high accuracy for analyzing tryptic digests from undifferentiated cultured rice cells. Peptides were identified by searching the product ion spectra against the protein, cDNA, transcript and genome databases from Michigan State University, and were mapped to the rice genome. Approximately 3200 genes were covered by these peptides and 40 of them contained novel genomic features. Users can search, download or navigate the database per chromosome, gene, protein, cDNA or transcript and download the updated annotations in standard GFF3 format, with visualization in PNG format. In addition, the database scheme of OryzaPG was designed to be generic and can be reused to host similar proteogenomic information for other species. OryzaPG is the first proteogenomics-based database of the rice proteome, providing peptide-based expression profiles, together with the corresponding genomic origin, including the annotation of novelty for each peptide.
Project description:In this study, we analyzed the early response of two rice cultivars to infection by RSV (Rice stripe virus) and its carrier at the transcriptome level using next-generation deep-sequencing techniques. We investigated the alteration in gene expression between a disease-resistant cultivar and a susceptible cultivar before and after inoculation with RSV by co-culturing with Laodelphax striatellus for 48 h. Our study provides insight at the molecular level into the mechanism of development of rice stripe disease, which contributes to our understanding of the rice-RSV interaction.