Project description:We found that primary root (PR) is more resistant to salt stress compared with crown roots (CR) and seminal roots (SR). To understand better salt stress responses in maize roots, six RNA libraries were generated and sequenced from primary root (PR), primary roots under salt stress (PR-salt) , seminal roots (SR), seminal roots under salt stress (SR-salt), crown roots (CR), and crown roots under salt stress (CR-salt). Through integrative analysis, we identified 444 genes regulated by salt stress in maize roots, and found that the expression patterns of some genes and enzymes involved in important pathway under salt stress, such as reactive oxygen species scavenging, plant hormone signal perception and transduction, and compatible solutes synthesis differed dramatically in different maize roots. 16 of differentially expressed genes were selected for further validation with quantitative real time RT-PCR (qRT-PCR).We demonstrate that the expression patterns of differentially expressed genes are highly diversified in different maize roots. The differentially expressed genes are correlated with the differential growth responses to salt stress in maize roots. Our studies provide deeper insight into the molecular mechanisms about the differential growth responses of different root types in response to environmental stimuli in planta.
Project description:We found that primary root (PR) is more resistant to salt stress compared with crown roots (CR) and seminal roots (SR). To understand better salt stress responses in maize roots, six RNA libraries were generated and sequenced from primary root (PR), primary roots under salt stress (PR-salt) , seminal roots (SR), seminal roots under salt stress (SR-salt), crown roots (CR), and crown roots under salt stress (CR-salt). Through integrative analysis, we identified 444 genes regulated by salt stress in maize roots, and found that the expression patterns of some genes and enzymes involved in important pathway under salt stress, such as reactive oxygen species scavenging, plant hormone signal perception and transduction, and compatible solutes synthesis differed dramatically in different maize roots. 16 of differentially expressed genes were selected for further validation with quantitative real time RT-PCR (qRT-PCR).We demonstrate that the expression patterns of differentially expressed genes are highly diversified in different maize roots. The differentially expressed genes are correlated with the differential growth responses to salt stress in maize roots. Our studies provide deeper insight into the molecular mechanisms about the differential growth responses of different root types in response to environmental stimuli in planta. Examination of three root types of maize under salt treatment for understanding the different responding mechenism to salt stress.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in maize, we generated small RNA sequences from maize seedlings that grew under control and under dought, salt, and cold stress treatments. Sequencing of small RNAs in maize under control, drought, salt, and cold stress conditions.
Project description:The proteome of Bacillus atrophaeus spores was established by shotgun proteomics to better characterize this biological material used as indicator to assess the effectiveness of decontamination procedures.
Project description:Salt stress is one major abiotic stress limiting maize grain yield throughout the world.To better understand maize salt tolerance molecular mechanism, comparative proteomic analysis was conducted on seedling roots of salt-tolerant genotype Jing724 and salt-sensitive genotype D9H under NaCl. Jing724 exhibited significantly higher germination rate and growth parameters (weight/length) than did D9H under salt treatment.We identified 565 differentially regulated proteins (DRP) usingiTRAQ and 89 were specific to Jing724 while 424 were specific to D9H. In salt stressed Jing724, pentose phosphate pathway, glutathione metabolism and nitrogen metabolism were enriched. By pathway enrichment and protein-protein interaction analyses, key DRPs such as glucose-6-phosphate 1-dehydrogenase, NADPH producing dehydrogenase, glutamate synthase and glutamine synthasewere identified.Additionally, salt responsive proteins of Jing724 were indicated to facilitate energy management, maintenance of redox homeostasis, reducing ammonia toxicity, osmotic homeostasis regulation, stress defense, stress adaptation, biotic cross-tolerance and gene transcription regulation. Quantification of multiple metabolic or enzymatic changes including SOD activity, MDA content, relative electrolyte leakage and Proline content were consistent with their predicted changes based on functions of DRPs. DRP analysis was correlated with the mRNA transcripts abundance variation of eight representative DRPs. These results contribute to elucidating molecular networks of salt tolerance.
Project description:Salt stress is one major abiotic stress limiting maize grain yield throughout the world.To better understand maize salt tolerance molecular mechanism, comparative proteomic analysis was conducted on seedling roots of salt-tolerant genotype Jing724 and salt-sensitive genotype D9H under NaCl. Jing724 exhibited significantly higher germination rate and growth parameters (weight/length) than did D9H under salt treatment.We identified 565 differentially regulated proteins (DRP) using iTRAQ and 89 were specific to Jing724 while 424 were specific to D9H. In salt stressed Jing724, pentose phosphate pathway, glutathione metabolism and nitrogen metabolism were enriched. By pathway enrichment and protein-protein interaction analyses, key DRPs such as glucose-6-phosphate 1-dehydrogenase, NADPH producing dehydrogenase, glutamate synthase and glutamine synthasewere identified.Additionally, salt responsive proteins of Jing724 were indicated to facilitate energy management, maintenance of redox homeostasis, reducing ammonia toxicity, osmotic homeostasis regulation, stress defense, stress adaptation, biotic cross-tolerance and gene transcription regulation. Quantification of multiple metabolic or enzymatic changes including SOD activity, MDA content, relative electrolyte leakage and Proline content were consistent with their predicted changes based on functions of DRPs. DRP analysis was correlated with the mRNA transcripts abundancevariation of eight representative DRPs. These results contribute to elucidating molecular networks of salt tolerance.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in maize, we generated small RNA sequences from maize seedlings that grew under control and under dought, salt, and cold stress treatments.
Project description:<p>Cold stress negatively affects maize (<em>Zea mays</em> L.) growth, development and yield. Metabolic adjustments contribute to the adaptation of maize under cold stress. We show here that the transcription factor INDUCER OF CBF EXPRESSION 1 (ZmICE1) plays a prominent role in reprogramming amino acid metabolome and <em>COLD-RESPONSIVE</em> (<em>COR</em>) genes during cold stress in maize. Derivatives of amino acids glutamate/asparagine (Glu/Asn) induce a burst of mitochondrial reactive oxygen species, which suppress the cold-mediated induction of <em>DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 1</em> (<em>ZmDREB1</em>) genes and impair cold tolerance. ZmICE1 blocks this negative regulation of cold tolerance by directly repressing the expression of the key Glu/Asn biosynthesis genes, <em>ASPARAGINE SYNTHETASEs</em>. Moreover, ZmICE1 directly regulates the expression of <em>DREB1s</em>. Natural variation at the <em>ZmICE1</em> promoter determines the binding affinity of the transcriptional activator ZmMYB39, a positive regulator of cold tolerance in maize, resulting in different degrees of <em>ZmICE1</em> transcription and cold tolerance across inbred lines. This study thus unravels a mechanism of cold tolerance in maize and provides potential targets for engineering cold-tolerant varieties.</p>
Project description:Chilling is a major stress to plants of subtropical and tropical origins including maize. To reveal molecular mechanisms underlying chilling tolerance and chilling survival, we investigated maize transcriptome responses to chilling stress in differentiated leaves and roots as well as in crowns with meristem activity for survival. Chilling stress on maize shoots and roots is found to each contribute to seedling lethality in maize. Comparison of maize lines with different chilling tolerance capacity reveals that chilling survival in maize is highly associated with upregulation in leaves and crowns of abscisic acid response pathway, transcriptional regulators and cold response as well as downregulation of heat response in crowns. Comparison of chilling treatment on whole and part of the plants reveals that response to distal-chilling is very distinct from, and sometimes opposite to, response to local- or whole-plant chilling in both leaves and roots, suggesting a communication between shoots and roots in environmental perception. In sum, this study details chilling responses in leaves, roots and crowns and reveals potential chilling survival mechanism in maize, which lays ground for further understanding survival and tolerance mechanisms under low but non-freezing temperatures in tropical and subtropical plants.
Project description:Integrative analysis of transcriptome, microRNA-seq and metabolome reveals an essential role of exogenous melatonin in enhancing salt stress tolerance during seed germination in maize