Project description:LIN-35 is the single C. elegans ortholog of the mammalian pocket protein family members, pRb, p107, and p130. To gain insight into the roles of pocket proteins during development, a microarray analysis was performed with lin-35 mutants. Stage-specific regulation patterns were revealed, indicating that LIN-35 plays diverse roles at distinct developmental stages. LIN-35 was found to repress the expression of many genes involved in cell proliferation in larvae, an activity that is carried out in conjunction with E2F. In addition, LIN-35 was found to regulate neuronal genes during embryogenesis and targets of the intestinal-specific GATA transcription factor, ELT-2, at multiple developmental stages. Additional findings suggest that LIN-35 functions in cell cycle regulation in embryos in a manner that is independent of E2F. A comparison of LIN-35-regulated genes with known fly and mammalian pocket-protein targets revealed a high degree of overlap, indicating strong conservation of pocket protein functions in diverse phyla. Based on microarray results and our refinement of the C. elegans E2F consensus sequence, we were able to generate a comprehensive list of putative E2F-regulated genes in C. elegans. These results implicate a large number of genes previously unconnected to cell cycle control as having potential roles in this process. Experiment Overall Design: We compared transcriptom profiles of lin-35 mutants and control N2 worms at 3 developmental stages (embryonic, L1 and L4). Experiment Overall Design: Each comparison was done in triplicate on independently grown and isolated animals.
Project description:LIN-35 is the single C. elegans ortholog of the mammalian pocket protein family members, pRb, p107, and p130. To gain insight into the roles of pocket proteins during development, a microarray analysis was performed with lin-35 mutants. Stage-specific regulation patterns were revealed, indicating that LIN-35 plays diverse roles at distinct developmental stages. LIN-35 was found to repress the expression of many genes involved in cell proliferation in larvae, an activity that is carried out in conjunction with E2F. In addition, LIN-35 was found to regulate neuronal genes during embryogenesis and targets of the intestinal-specific GATA transcription factor, ELT-2, at multiple developmental stages. Additional findings suggest that LIN-35 functions in cell cycle regulation in embryos in a manner that is independent of E2F. A comparison of LIN-35-regulated genes with known fly and mammalian pocket-protein targets revealed a high degree of overlap, indicating strong conservation of pocket protein functions in diverse phyla. Based on microarray results and our refinement of the C. elegans E2F consensus sequence, we were able to generate a comprehensive list of putative E2F-regulated genes in C. elegans. These results implicate a large number of genes previously unconnected to cell cycle control as having potential roles in this process. Keywords: time course
Project description:The Retinoblastoma-like pocket proteins p130 and p107 act as gatekeepers of the cell cycle through their activity within the DREAM (Dp/Rb-like/E2F/MuvB) transcriptional repressor complex. The goal of this study was to address how the pocket protein contributes to DREAM complex assembly and function on chromatin by utilizing a protein null mutant of the only C. elegans pocket protein LIN-35. We performed ChIP-seq of C. elegans DRM subunits in wild-type and lin-35 null late embryos to assess the effect on their chromatin localization following loss of LIN-35.
Project description:The highly conserved DREAM transcriptional repressor complex contains an RB-like pocket protein, an E2F-DP transcription factor heterodimer, and the 5-subunit MuvB complex. Using CRISPR/Cas9 targeted mutagenesis, we disrupted the interaction between the sole Caenorhabditis elegans pocket protein LIN-35 and the MuvB subunit LIN-52. A triple alanine substitution of LIN-52's LxCxE motif (3A) severed LIN-35-MuvB association and caused classical DREAM mutant phenotypes, including synthetic multiple vulvae, high-temperature arrest, and ectopic expression of germline genes in the soma. We performed RNA-seq in lin-52(3A) mutant late embryos (4 replicates) compared to lin-52(WT) wild-type late embryos (4 replicates) to assess the genome-wide effects on gene expression that result from severing LIN-35-MuvB association.