Project description:OBJECTIVES: Amplification of the 11q13 locus is commonly observed in a number of human cancers including both breast and ovarian cancer. Cyclin D1 and EMS1 have been implicated as candidate oncogenes involved in the emergence of amplification at this locus. Detailed analysis of the 11q13 amplicon in breast cancer led to the discovery of four regions of amplification suggesting the involvement of other genes. Here, we investigate the role of EMSY, a recently described BRCA2 interacting protein, as a key element of the 11q13 amplicon in ovarian cancer. EMSY maps to 11q13.5 and is amplified in 13% of breast and 17% of ovarian carcinomas. METHODS: EMSY amplification was assessed by fluorescent in-situ hybridization (FISH) in 674 ovarian cancers in a tissue microarray and correlated with histopathological subtype and tumor grade. A detailed map of the 11q13 amplicon in 51 cases of ovarian cancer was obtained using cDNA-array-based comparative genomic hybridization (aCGH). To further characterize the role of EMSY within this amplicon, we evaluated both the amplification profiles and RNA expression levels of EMSY and two other genes from the 11q13 amplicon in an additional series of 22 ovarian carcinomas. : EMSY amplification was seen in 52/285 (18%) high grade papillary serous carcinomas, 4/27 (15%) high grade endometrioid carcinomas, 3/38 (8%) clear cell carcinomas, and 3/10 (30%) undifferentiated carcinomas. aCGH mapping of 11q13 in ovarian cancer showed that EMSY localized to the region with the highest frequency of copy number gain. Cyclin D1 and EMS1 showed a lower frequency of copy number gain. A highly significant correlation between EMSY gene amplification and RNA expression was also observed (P = 0.0001). This was a stronger correlation than for other genes at 11q13 including Cyclin D1 and PAK1. CONCLUSIONS: These findings support the role of EMSY as a key oncogene within the 11q13 amplicon in ovarian cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:We used a new technology, named Detect-seq, to perform genome sequencing on transfected HEK293T cells to see DdCBEs' off-target mutations. Besides, targeted-amplicon sequencing, ATAC-seq and in situ ChIP-seq data were applied to validate the results of Detect-seq.
Project description:Genome editing was conducted on a t(3;8) K562 model to investigate the effects of deleting different modules or CTCF binding sites within the MYC super-enhancer. To check mutations after targeting with CRISPR-Cas9 we performed amplicon sequencing using the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The first PCR was performed using Q5 polymerase (NEB), the second nested PCR with KAPA HiFi HotStart Ready mix (Roche). Samples were sequenced paired-end (2x 250bp) on a MiSeq (Illumina).
Project description:Following a CRISPR enhancer scan covering the GATA2 super-enhancer region, the top sgRNAs were selected for further inspection. MUTZ3 cells were thus treated with the selected sgRNAs and the region of interested was subjected to amplicons sequencing (amplicon-seq). To that end, we used the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The same experiment was conducted in K562 cells, which do not harbor an inv(3)/t(3;3), to investigate the role of MYB in this enhancer in other leukemia settings
Project description:In metazoans mitochondrial DNA (mtDNA) or retrotransposon cDNA released to cytoplasm are degraded by nucleases to prevent sterile inflammation. It remains unknown whether degradation of these DNA also prevents nuclear genome instability. We used an amplicon sequencing-based method in yeast enabling analysis of millions of DSB repair products. In non-dividing stationary phase cells, Pol4-mediated non-homologous end-joining increases, resulting in frequent insertions of 1-3 nucleotides, and insertions of mtDNA (NUMTs) or retrotransposon cDNA. Yeast EndoG (Nuc1) nuclease limits insertion of cDNA and transfer of very long mtDNA (>10 kb) to the nucleus, where it forms unstable circles, while promoting the formation of short NUMTs (~45-200 bp). Nuc1 also regulates transfer of extranuclear DNA to nucleus in aging or meiosis. We propose that Nuc1 preserves genome stability by degrading retrotransposon cDNA and long mtDNA, while short NUMTs originate from incompletely degraded mtDNA. This work suggests that nucleases eliminating extranuclear DNA preserve genome stability.