Project description:Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia
| PRJNA988840 | ENA
Project description:Ecological diversification and Phylogenomics of the Caribbean octocoral genus Eunicea
Project description:Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
2014-05-20 | GSE40035 | GEO
Project description:Molecular Evolution of Ecological Specialisation: Genomic Insights from the Diversification of Murine Rodents
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGenM-bM-^@M-^Ys tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis Comparative genomic analysis on the 40 S.suis strains of different serotypes and ST types through tilling arrays
Project description:To comprehend the drivers underlying venom variation in ants, we selected 15 Neotropical species and recorded a range of traits, including ecology, morphology, and venom bioactivity. Principal component analysis of both morphological and venom bioactivity traits revealed that stinging ants display two functional strategies. Additionally, phylogenetic comparative analysis indicated that venom function (predatory, defensive, or both) and mandible morphology significantly correlate with venom bioactivity and amount, while pain-inducing activity trades off with insect paralysis. Further analysis of the venom biochemistry of the 15 species revealed switches between cytotoxic and neurotoxic venom compositions in some species. This study highlights the fact that ant venoms are not homogenous, and for some species, there are major shifts in venom composition associated with the diversification of venom ecological functions.
2024-10-16 | PXD050348 | Pride
Project description:Phylogenomics and temporal diversification of characiform fishes
Project description:Groups of samples used in Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system profiles. Keywords: other