Project description:Strain SM1988T is a Gram-negative, aerobic, oxidase- and catalase-positive, unipolar flagellated, and rod-shaped bacterium capable of hydrolyzing casein, gelatin and collagens. Phylogenetic analysis revealed that strain SM1988T formed a distinct phylogenetic lineage along with known genera within the family Pseudoalteromonadaceae, with 16S rRNA gene sequence similarity being less than 93.3% to all known species in the family. Based on the phylogenetic, genomic, chemotaxonomic and phenotypic data, strain SM1988T was considered to represent a novel species in a novel genus in the family Pseudoalteromonadaceae, for which the name Flocculibacter collagenilyticus gen. nov., sp. nov. is proposed, with the type strain being SM1988T (= MCCC 1K04279T = KCTC 72761T). Strain SM1988T showed a high production (236 U/mL) of extracellular collagenases, which had high activity against both bovine collagen and codfish collagen. Biochemical tests combined with genomic and secretomic analyses indicated that the collagenases secreted by strain SM1988T are serine proteases from the S8 family. These data suggest that strain SM1988T acts as an important player in marine collagen degradation and recycling and may have a promising potential in collagen resource utilization.
2021-01-14 | PXD023431 | Pride
Project description:Phylogenomic analyses of ciliates
Project description:Bartonelloses are neglected emerging infectious diseases caused by facultatively intracellular bacteria transmitted between vertebrate hosts by various arthropod vectors. The highest diversity of Bartonella species has been identified in rodents. Within this study we focused on the edible dormouse (Glis glis), a rodent with unique life-history traits that often enters households and whose possible role in the epidemiology of Bartonella infections had been previously unknown. We identified and cultivated two distinct Bartonella sub(species) significantly diverging from previously described species, which were characterized using growth characteristics, biochemical tests, and various molecular techniques including also proteomics. Two novel (sub)species were described: Bartonella grahamii subsp. shimonis subsp. nov. and Bartonella gliris sp. nov.We sequenced two individual strains per each described (sub)species. During exploratory genomic analyses comparing two genotypes ultimately belonging to the same species, both factually and most importantly even spatiotemporally, we noticed unexpectedly significant structural variation between them. We found that most of the detected structural variants could be explained either by prophage excision or integration. Based on a detailed study of one such event, we argue that prophage deletion represents the most probable explanation of the observed phenomena.Moreover, in one strain of Bartonella grahamii subsp. shimonis subsp. nov. we identified a deletion related to Bartonella Adhesin A, a major pathogenicity factor that modulates bacteria-host interactions. Altogether, our results suggest that even a limited number of passages induced sufficient selective pressure to promote significant changes at the level of the genome.
Project description:We have evaluated the possible use of zebrafish to study antiviral RNAi with sindbis virus (SINV), vesicular stomatitis virus (VSV), and nodamura virus (NoV). We find that SINV and NoV viruses induce the production of virus-derived small interfering RNAs (vsiRNAs), the hallmark of antiviral RNAi, with a preference of 22 nucleotides in length after infection of larval zebrafish. Meanwhile, the suppressor of RNAi (VSR) protein, NoV B2, may affect the accumulation of the NoV virus in zebrafish.
Project description:Strains 2-22 (S. agalactiae ST261 isolated from fish) and A909 (ST7) were grown in TH medium, at 30C and harvested at OD 0.3-0.4. Please note: ST261 and ST7 refer to MLST types commonly used in S.agalactiae as a first approach for phylogenomic relationships (MLST is based on the sequence of 7 genes).