Project description:Changes in gene expression during berry development during a grape growing season were analysed. Grape berries were collected and pooled on a weekly basis to obtain a developmental series comprising of 19 developmental stages from flowering until harvest across the grape growing season. Gene expression patterns during development were obtained. Keywords: Time course, developmental series
Project description:Changes in gene expression during berry development during a grape growing season were analysed. The effect on gene expression of different viticultural practises during grape berry development was investigated in this study by comparing two irrigation methods (standard versus prolonged deficit irrigation). Grape berries were collected and pooled on a weekly basis to obtaining a developmental series comprising of 17 developmental stages from flowering until harvest across the grape growing season for both standard and prolonged deficit irrigated vines. Gene expression patterns during development and between pruning treatments were obtained. Keywords: Time course, developmental series and treatments
Project description:Changes in gene expression during berry development during a grape growing season were analysed. The effect on gene expression of different viticultural practises during grape berry development was investigated in this study by comparing two pruning methods (spur versus machine). Grape berries were collected and pooled on a weekly basis to obtain a developmental series comprised of 17 developmental stages from flowering until harvest across the grape growing season for both spur and machine pruned vines. Gene expression patterns during development and between pruning treatments were obtained. Keywords: Time course, developmental series and treatments
Project description:Grapevine is a popular fruit crop worldwide with essential economic importance. The grape berry undergoes complex biochemical changes from fruit set until ripening. To better understand this dynamic process, we applied mass spectrometry based platforms to analysis the metabolome and proteome of grape berries at 12 developmental stages covering the whole developmental process of grape berries. Primary metabolites involved in central carbon metabolism such as sugars, organic acids and amino acids metabolism together with various bioactive secondary metabolites like flavonols, flavan-3-ols and anthocyanins were annotated and quantified. At the same time, the proteomic analysis revealed the protein dynamics of the developing grape berries. Multivariate statistical analysis of the metabolomic and proteomic data revealed growing trajectories with minor difference indicating that grape berry development is a sequential process resulting in changes in all examined processes. The incorporation of the metabolomic and proteomic results allowed us to schematize representative metabolome and proteome candidates on sugar, glycolysis, TCA cycle, amino acid, phenylpropanoid, flavonoid biosynthetic pathways. The overview of the metabolism dynamics on both protein and metabolite level unveiled the metabolism switch and adjustments during grape berry development.
Project description:The vacuole occupies a large portion of plant cell volume, it is especially true to fruit tissues. Berry flesh cell vacuole serves as storage organelle for water, sugars, acids, secondary metabolites and others, which largely determining berry quality (Fontes et al., 2011a, b; Shiratake and Martinoia, 2007, Conde et al., 2006). However, the molecular basis of these compartmentation processes is still poorly understood. As in many species, the major bottle neck to study these aspects in grapevine is to obtain highly purified vacuoles with a good yield (Fontes et al., 2010). Up to date, several vacuole or tonoplast proteome researches were applied on a few plants mainly on Arabidopsis thaliana, vacuoles or tonoplast were derived from mesophyll cells (Carter et al., 2004, Endler et al., 2006, Schulze, et al., 2012) or cell culture (Jaquinod et al 2006, Shimaoka et al 2004), cauliflower buds (Schmidt et al., 2007) and sugar beet taproots (Jung et al., 2015). Though the grape berry protoplasts and intact vacuoles were successfully isolated from Cabernet Sauvignon berry suspension-cultured cells (Fontes et al., 2010), the vacuoles isolated from grape berry or different development and ripening stages of grape berry mesocarp tissues were not achieved.
Project description:This microarray experiment provides data which shows of the effects on gene expression from the artificial application of certain hormones on their own or in combination on ripening berries from the Adelaide Hills Various hormones have been implicated as having an effect on the grape berry ripening process. Their application prior to ripening may change the gene expression profile at veraison. The identification of the genes which are expressed at different levels due to the various hormone treatments may give insight to key gene expression changes in the ripening process. Keywords: Hormone treatment-Development
Project description:Protein hydrolysate (PH)-based biostimulants offer a cost-effective and sustainable approach for regulating physiological processes in plants to stimulate growth and improve quality characteristics and stress tolerance. The effectiveness of treatments using different categories of biostimulants on grapevine growth and development has been well-documented for foliar applications compared to soil applications. Considering table grapes, colour is an important quality trait that can be modulated by vineyard practice, including fertilization. In this context, we have evaluated the effects of an environmentally friendly biostimulant, a protein hydrolysate derived from corn gluten, on the berry developmental process of the Black magic table grape. When applied to the soil at veraison, the biostimulant increased the cluster weight, berry diameter, and colour just 14 days after application. The transcriptome analysis of berries carried out at the same sampling time point underlined that the treatment speeds up the ripening process.
Project description:Grape berry development is a highly coordinated, intricate and complex process with many morphological, biochemical and physiological changes occurring during the ripening process. Equally, ripening is an organoleptic characteristic linked to fruit development. The fruits Seedless (FS) and Victoria (VT) grape varieties exhibit many morphological and phytochemical differences, but genetic mechanisms underlying them remain poorly explored. Herein, we comparatively analysed the phenotypic and transcriptomic patterns of Victoria (VT) and Flame Seedless (FS) grape varieties during berry development. We studied the physiological analysis and transcriptomic profiles sequencing were performed at four berry developmental stages time-points (40, 50, 60 and 80 DPA). Notably, the VT variety berry size was comparatively larger to the FS variety. At maturity, 80DPA, the FS soluble solids were 61.8% higher than VT. Further, a total of 4889 and 2802 DEG’s were identified from VT and FS 40 DPA to 80 DPA development stages, respectively. 1386 DEGs were common in the two varieties. GO analysis identified Cysteine biosynthetic process, response to red light, chlorophyll binding, polysaccharide biosynthetic process and chloroplast thylakoid membrane as some of the dominant terms under the biological processes, molecular function and cellular component categories.