Project description:While ApoE expression by myeloid cells is recognized to control inflammation, whether such benefits can be communicated via extracellular vesicles including exosomes is not known. Through the study of exosomes produced by macrophages derived from the bone marrow of Wildtype (WT-BMDM-exo) and ApoE deficient (EKO-BMDM-exo) mice, we uncover a critical role of ApoE in regulating cell signaling properties. We treated splenic CD4+ T cells with EKO-BMDM-exo, WT-BMDM-exo, or PBS and performed gene expression profiling analysis. We found that CD4+ T cells treated with EKO-BMDM-exo show elevations in genes involved in the T-cell receptor complex (Cd3e, Cd247, & Cd4) and Il2rg, a key component of cytokine receptors on CD4+ T cells. Taken together, our data unveil a novel property of macrophage ApoE in controlling adaptive immunity by their secreted exosomes.
Project description:To mount an anti-pathogen response, CD4 T cells must undergo rapid cell proliferation. However, poorly controlled expansion can result in diseases such as autoimmunity. One important regulator of T cell activity is the E3 ubiquitin ligase Itch. Itch deficient patients suffer from extensive autoinflammation. Similarly, Itch deficient mice exhibit inflammation characterized by high numbers of activated CD4 T cells. While the role of Itch in limiting CD4 T cell cytokine production has been extensively studied, it is less clear whether and how Itch regulates proliferation of these cells. We determined that Itch deficient CD4 T cells are hyperproliferative in vitro and in vivo, due to increased S phase entry. Whole cell proteomics analysis of Itch deficient primary mouse CD4 T cells revealed increased abundance of the -catenin co-activator WW domain binding protein 2 (WBP2). Furthermore, Itch deficient cells demonstrate increased WBP2 protein stability, and Itch and WBP2 interact in CD4 T cells. Knockdown of WBP2 in CD4 T cells caused reduced proliferation. Together, our data support that Itch attenuates CD4 T cell proliferation by promoting WBP2 degradation. This study identifies novel roles for Itch and WBP2 in regulating CD4 T cell proliferation, providing insight into how Itch may prevent inflammation.
Project description:The multi-ligand Receptor for AGE (RAGE) contributes to atherosclerosis in apolipoprotein (ApoE) null mice in both the non-diabetic and diabetic states. Previous studies using soluble RAGE, the extracellular ligand-binding domain of RAGE, or homozygous RAGE null mice showed that blockade or deletion of RAGE resulted in marked reduction in atherosclerotic lesion area and complexity compared to control animals. In parallel, significant down-regulation of inflammatory mediators and matrix metalloproteinases was evident in ApoE null mice aortas devoid of RAGE compared to those of ApoE null RAGE-expressing mice. Although these findings suggested that RAGE triggered pro-atherogenic mechanisms via regulation of inflammatory gene expression, these studies did not reveal the broader pathways by which RAGE contributed to atherosclerosis in ApoE null mice. Therefore, we performed Affymetrix gene expression arrays on aortas of non-diabetic and diabetic ApoE null mice expressing RAGE or devoid of RAGE at nine weeks of age, as this reflected a time point at which frank atherosclerotic lesions were not yet present, but, that we would be able to identify the genes likely involved in diabetes- and RAGE-dependent atherogenesis. The comparisons were as follows: 1. diabetic ApoE null relative to non-diabetic ApoE null; 2. non-diabetic ApoE null / RAGE null relative to non-diabetic ApoE null; 3. diabetic ApoE null / RAGE null relative to non-diabetic ApoE null / RAGE null; and 4. diabetic ApoE null / RAGE null relative to diabetic ApoE null aorta. Our data reveal that there is very little overlap of the genes which are differentially expressed both in the onset of diabetes in ApoE null mice, and in the effect of RAGE deletion in diabetic ApoE null mice. We next performed a Pathway-Express analysis to determine the pathways that were most associated with the onset of diabetes in ApoE null mice and the effect of RAGE gene deletion in diabetic ApoE null mice. Rigorous statistical analysis was undertaken and revealed that the transforming growth factor-beta pathway (tgf-beta) and focal adhesion pathways might be expected to play a significant role in both the mechanism by which diabetes facilitates the formation of atherosclerotic plaques in ApoE null mice, and the mechanism by which deletion of RAGE ameliorates this effect. We focused on three genes of the tgf-betafamily which were found to be up-regulated in diabetic vs. non-diabetic ApoE null aorta, and which were reduced by deletion of RAGE. These included: thrombospondin1 (Thbs1), transforming growth factor-beta (tgf-beta) and rho-associated kinase (ROCK1). Real-time quantitative polymerase chain reaction and Western blotting experiments were performed, as well as ROCK1 activity assays in mouse aorta, and validated the findings of the Affymetrix gene array. Further, confocal microscopy revealed that a principal cell type in the ApoE null aorta expressing these factors was the vascular smooth muscle cell. Our data suggest the novel finding that the observed reduction of accelerated atherosclerosis in diabetic ApoE null / RAGE null vs. diabetic ApoE null mice occurs, all or in part, through the ROCK1 branch of the TGF-betapathway. We have inferred a detailed mechanism for this process. Taken together, these data suggest that suppression of ROCK1 activity in the atherosclerosis-vulnerable vessel wall, especially in diabetes, but in non-diabetes as well, may underlie the beneficial effects of RAGE antagonism and genetic deletion in murine models. These findings highlight logical and novel targets for therapeutic intervention in cardiovascular disease and diabetes. 1. diabetic ApoE null relative to non-diabetic ApoE null; 2. non-diabetic ApoE null / RAGE null relative to non-diabetic ApoE null; 3. diabetic ApoE null / RAGE null relative to non-diabetic ApoE null / RAGE null; and 4. diabetic ApoE null / RAGE null relative to diabetic ApoE null aorta. There were 4 mice in each group initially. However there are only 3 non-diabetic ApoE null / RAGE null mice in the final experimental sample in group 3 due to a failure to generate cRNA from that sample. All samples were normalized to remove chip-dependent regularities using the RMA method. Chips and controls at each combination of genotype and disease sate were normalized together. The statistical significance of differential expression was calculated using the empirical Bayesian LIMMA (LInear Model for MicroArrays) method A cut-off B>0 was used for the statistical significance of gene expression.
Project description:Treatment of T cells with pyrvinium pamoate (PP) early during their activation blocks mitochondrial biogenesis and results in reduced proliferation, skewed CD4+ T cell differentiation and reduced cytokine production. Therefore, to examine the role of PP treatment on mitochondria health, we performed gene expression analysis to identify differentially expressed genes in naive CD4+ T cells cultured with anti-CD3/CD28 plus PP or DMSO. Naive CD4+ T cells were activated for six hours with 2 mg/mL anti-CD3/anti-CD28 mAbs and activated for an additional one hour in the presence or absence of PP.
Project description:The experiment was designed to test how autocrine TNF-alpha impacts human CD4+ T cell activation. Naïve CD4+ T cells from healthy human blood donors were either left unactivated or activated with anti-CD3/anti-CD28 in presence of an isotype control antibody or anti-TNF-alpha antibody. RNA was extracter at 48 hours. Analysis revealed that anti-TNF-alpha treatment prevented upregulation of activation-induced T cell metabolic, signaling and effector molecules.