Project description:White-rot fungi (WRF), considered the most efficient organisms at degrading organic carbon in the biosphere, are found in plant cell wall lignin biopolymer. We employ multi-omics to demonstrate that Trametes versicolor and Gelatoporia subvermispora funnel lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems.
Project description:In this study, we compared the transcriptomeic profiles of two recently sequenced white-rot wood-decaying mushrooms, Trametes pubescens and Phlebia centrifuga, during their growth on two common plant biomass substrates at different temperatures.
Project description:Wood-degrading fungi play a critical role in global carbon cycling, and their varied mechanisms for deconstruction offer pathways for industrial bioconversion. In this study, we used comparative genomics to isolate upregulation patterns among fungi with brown rot (carbohydrate-selective) or white rot (lignin-degrading) nutritional modes. Specifically, we used whole-transcriptome profiling to compare early, middle, and late decay stages on wood wafers, matching differentially-expressed gene (DEG) patterns with fungal growth and enzyme activities. This approach highlighted 34 genes uniquely upregulated in early brown rot stages, with notable candidates involved in generating reactive oxygen species (ROS) as a pretreatment mechanism during brown rot. This approach further isolated 18 genes in late brown rot stages that may be adapted to handle oxidatively-reacted lignocellulose components. By summing gene expression levels in functional classes, we also identified a broad and reliable distinction in glycoside hydrolase (GH) versus lignocellulose oxidative (LOX) transcript counts that may reflect the energy investment burden of lignin-degrading machinery among white rot fungi.
Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. In order to improve our understanding on the enzymatic mechanisms leading to lignocellulose breakdown, we analysed the early response of the white-rot fungus Pycnoporus coccineus CIRM-BRFM310 to various lignocellulosic substrates at two time points; Day 3 and Day 7.
Project description:Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in Nature. While lignin depolymerization by WRF has been exhaustively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here we employ 13C-labeling and systems biology approaches to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems, and furthermore establishes a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts – a key step towards enabling a sustainable bioeconomy.
Project description:Unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in global carbon cycle. In this study, we analyzed proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, while growing on solid spruce wood, and defined a core set of CAZymes that was shared between these species including the orthologous enzymes. Similar production pattern of these CAZymes indicate their key role in plant biomass degradation and need for their further biochemical characterization. The obtained results give an insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to exploitation of white rot fungi and their enzymes in biotechnological applications.
Project description:White rot fungi are able to degrade woody lignin and other persistent organic compounds including artificial chemicals (e.g. chlorinated dioxin) in secondary metabolism. This ability has potential in a wide range of biotechnological applications including remediation of organopollutants and the industrial processing of paper and textiles. Ligninolytic fungi secondarily secrete extracellular oxidative enzymes thought to play an important role in these compounds decay. However, detail of metabolic pathway and initiation signals of the degradation system is unclear. To investigate genes directly and indirectly related to it, we constructed long serial analysis of gene expression (Long SAGE) library from the most studied white rot fungus, Phanerochaete chrysosporium. Keywords: transcriptome profiling
Project description:Fomitiporia mediterranea (Fmed) is one of the main fungal species found in grapevine wood rot, also called “amadou”, one of the most typical symptoms of grapevine trunk disease Esca. This fungus is functionally classified as a white-rot, able to degrade all wood structure polymers, i.e., hemicelluloses, cellulose, and the most recalcitrant component, lignin. Specific enzymes are secreted by the fungus to degrade those components, namely carbohydrate active enzymes for hemicelluloses and cellulose, which can be highly specific for given polysaccharide, and peroxidases, which enable white-rot to degrade lignin, with specificities relating to lignin composition as well. Furthermore, besides polymers, a highly diverse set of metabolites often associated with antifungal activities is found in wood, this set differing among the various wood species. Wood decayers possess the ability to detoxify these specific extractives and this ability could reflect the adaptation of these fungi to their specific environment. The aim of this study is to better understand the molecular mechanisms used by Fmed to degrade wood structure, and in particular its potential adaptation to grapevine wood. To do so, Fmed was cultivated on sawdust from different origins: grapevine, beech, and spruce. Carbon mineralization rate, mass loss, wood structure polymers contents, targeted metabolites and secreted proteins were measured. We used the well-known white-rot model Trametes versicolor for comparison. Whereas no significant degradation was observed with spruce, a higher mass loss was measured on Fmed grapevine culture compared to beech culture. Moreover, on both substrates, a simultaneous degradation pattern and the degradation of wood extractives were demonstrated, and proteomic analyses identified a relative overproduction of oxidoreductases involved in lignin and extractive degradation on grapevine cultures, and only few differences in carbohydrate active enzymes. These results could explain at least partially the adaptation of Fmed to grapevine wood structural composition compared to other wood species and suggest that other biotic and abiotic factors should be considered to fully understand the potential adaptation of Fmed to its ecological niche.
Project description:Deadwood plays a crucial role in forest ecosystems, but we have limited information about the specific fungal taxa and extracellular lignocellulolytic enzymes that are actively involved in the decomposition process in situ. To investigate this, we studied the fungal metaproteome of twelve deadwood tree species in a replicated, eight-year experiment. Key fungi observed included genera of white-rot fungi (Basidiomycota, e.g. Armillaria, Hypholoma, Mycena, Ischnoderma, Resinicium), brown-rot fungi (Basidiomycota, e.g. Fomitopsis, Antrodia), diverse Ascomycota including xylariacous soft-rot fungi (e.g. Xylaria, Annulohypoxylon, Nemania) and various wood-associated endophytes and saprotrophs (Ascocoryne, Trichoderma, Talaromyces). These fungi used a whole range of extracellular lignocellulolytic enzymes, such as peroxidases, peroxide-producing enzymes, laccases, cellulases, glucosidases, hemicellulases (xylanases) and lytic polysaccharide monooxygenases (LPMOs). Both the fungi and enzymes were tree-specific, with specialists and generalists being distinguished by network analysis. The extracellular enzymatic system was highly redundant, with many enzyme classes of different origins present simultaneously in all decaying logs. Strong correlations were found between peroxide-producing enzymes (oxidases) and peroxidases as well as LPMOs, and between ligninolytic, cellulolytic and hemicellulolytic enzymes. The overall protein abundance of lignocellulolytic enzymes was reduced by up to -30% in gymnosperm logs compared to angiosperm logs, and gymnosperms lacked ascomycetous enzymes, which may have contributed to the lower decomposition of gymnosperm wood. In summary, we have obtained a comprehensive and detailed insight into the enzymatic machinery of wood-inhabiting fungi in several temperate forest tree species, which can help to improve our understanding of the complex ecological processes in forest ecosystems.