Project description:We analyzed expression of miRNAs in Exhaled Breath Condensates from pediatric patients with sickle cell disease, asthma, sickle cell disease and asthma, and controls
Project description:To analyze expression of inflammatory cytokines in Exhaled Breath Condensates from pediatric patients with sickle cell disease, asthma, sickle cell disease and asthma, and controls
Project description:mzML files used to generate Figure 2B.
Isoprene in the exhaled breath of mice receiving daily isoprene doses for 14 days, and exhaled breath of mice receiving concurrent daily vehicle controls, or in the ambient air alone
Project description:Background: Primary graft dysfunction (PGD) remains a challenge to lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for the rapid detection of PGD and the measurement of particle flow rate (PFR) from exhaled breath is a novel means to monitor disease. Methods: 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on the third post-operative day. Exhaled breath particles (EBPs) and PFR were measured on mechanical ventilation. EBPs were evaluated with mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Results: 9 recipients developed PGD and had significantly higher PFR (686.4 (449.7-8824.0) particles per minute (ppm)) compared to recipients without PGD (116.6 (79.7-307.4) ppm, p=0.0005). From proteomic analysis, porcine and human EBP proteins recapitulated the BAL and adherens and tight junction proteins were underexpressed in PGD tissue. Conclusions: Histological and proteomic analysis found significant changes to the alveolar-capillary barrier to explain the increased PFR in recipients with PGD. Combined with the similarity of proteomic profiles between EBPs and BALF, exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.
Project description:Novel exhaled breath condensate device tests 4 times. Each test generated a single saliva sample and a corresponding exhaled breath condensate sample
Project description:This is GCxGC MS data from exhaled breath from humanized mice as well as germ-free controls. Raw files in CDF format (Figure S5B, S5C, Figure S6D, Figure 5D of associated publication)
Project description:This is GCxGC MS data from exhaled breath from conventional and conventionalized mice as well as germ-free controls. Raw files in CDF format (Figure 3A-F, Figure S4A-B from our publication)
Project description:<p>Real-time breath analysis using secondary electrospray ionization coupled with high-resolution mass spectrometry is a fast and noninvasive method to access the metabolic state of a person. However, it lacks the ability to unequivocally assign mass spectral features to compounds due to the absence of chromatographic separation. This can be overcomed by using exhaled breath condensate and conventional liquid chromatography-mass spectrometry (LC-MS) systems. In this study, to the best of our knowledge, we confirm for the first time the presence of six amino acids (GABA, Oxo-Pro, Asp, Gln, Glu, and Tyr) previously reported to be involved in response to and side effects from antiseizure medications in exhaled breath condensate and by extension in exhaled human breath.</p>
Project description:Despite the attractiveness of breath analysis as a non-invasive means to retrieve relevant metabolic information, its introduction into routine clinical practice remains a challenge. Among all the different analytical techniques available to interrogate exhaled breath, secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) offers a number of advantages (e.g., real-time, yet wide, metabolome coverage) that makes it ideal for untargeted and targeted studies. However, so far, SESI-HRMS has relied mostly on lab-built prototypes, making it difficult to standardize breath sampling and subsequent analysis, hence preventing further developments such as multi-center clinical studies. To address this issue, we present here a number of new developments. In particular, we have characterized a new SESI interface featuring real-time readout of critical exhalation parameters such as CO2, exhalation flow rate, and exhaled volume. Four healthy subjects provided breath specimens over a period of 1 month to characterize the stability of the SESI-HRMS system. A first assessment of the repeatability of the system using a gas standard revealed a coefficient of variation (CV) of 2.9%. Three classes of aldehydes, namely 4-hydroxy-2-alkenals, 2-alkenals and 4-hydroxy-2,6-alkedienals―hypothesized to be markers of oxidative stress―were chosen as representative metabolites of interest to evaluate the repeatability and reproducibility of this breath analysis analytical platform. Median and interquartile ranges (IQRs) of CVs for CO2, exhalation flow rate, and exhaled volume were 3.2% (1.5%), 3.1% (1.9%), and 5.0% (4.6%), respectively. Despite the high repeatability observed for these parameters, we observed a systematic decay in the signal during repeated measurements for the shorter fatty aldehydes, which eventually reached a steady state after three/four repeated exhalations. In contrast, longer fatty aldehydes showed a steady behavior, independent of the number of repeated exhalation maneuvers. We hypothesize that this highly molecule-specific and individual-independent behavior may be explained by the fact that shorter aldehydes (with higher estimated blood-to-air partition coefficients; approaching 100) mainly get exchanged in the airways of the respiratory system, whereas the longer aldehydes (with smaller estimated blood-to-air partition coefficients; approaching 10) are thought to exchange mostly in the alveoli. Exclusion of the first three exhalations from the analysis led to a median CV (IQR) of 6.7 % (5.5 %) for the said classes of aldehydes. We found that such intra-subject variability is in general much lower than inter-subject variability (median relative differences between subjects 48.2%), suggesting that the system is suitable to capture such differences. No batch effect due to sampling date was observed, overall suggesting that the intra-subject variability measured for these series of aldehydes was biological rather than technical. High correlations found among the series of aldehydes support this notion. Finally, recommendations for breath sampling and analysis for SESI-HRMS users are provided with the aim of harmonizing procedures and improving future inter-laboratory comparisons.