Project description:Whether synthetic genomescan power life has attracted broad interest in the synthetic biology field, especially when the synthetic genomes are extensively modified with thousands of designer features. Here we reportde novosynthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bpSaccharomyces cerevisiaechromosome resulting from extensive genome streamlining and modification. During the construction ofsynIV, we developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction and facilitated chromosome debugging. In addition to the drastic sequence changes made to synIV by rewriting it, we further manipulated the three-dimensional structure of synIV in the yeast nucleus to explore spatial gene regulation within the nuclear space. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of the largest synthetic yeast chromosome shed light on higher-order architectural design of the synthetic genomes.
Project description:Whether synthetic genomescan power life has attracted broad interest in the synthetic biology field, especially when the synthetic genomes are extensively modified with thousands of designer features. Here we reportde novosynthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bpSaccharomyces cerevisiaechromosome resulting from extensive genome streamlining and modification. During the construction ofsynIV, we developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction and facilitated chromosome debugging. In addition to the drastic sequence changes made to synIV by rewriting it, we further manipulated the three-dimensional structure of synIV in the yeast nucleus to explore spatial gene regulation within the nuclear space. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of the largest synthetic yeast chromosome shed light on higher-order architectural design of the synthetic genomes.
Project description:Whether synthetic genomescan power life has attracted broad interest in the synthetic biology field, especially when the synthetic genomes are extensively modified with thousands of designer features. Here we reportde novosynthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bpSaccharomyces cerevisiaechromosome resulting from extensive genome streamlining and modification. During the construction ofsynIV, we developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction and facilitated chromosome debugging. In addition to the drastic sequence changes made to synIV by rewriting it, we further manipulated the three-dimensional structure of synIV in the yeast nucleus to explore spatial gene regulation within the nuclear space. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of the largest synthetic yeast chromosome shed light on higher-order architectural design of the synthetic genomes.
Project description:Mitotic chromosomes are among the most recognizable structures in the cell, yet for over a century their internal organization remains largely unsolved. We applied chromosome conformation capture methods, 5C and Hi-C, across the cell cycle and revealed two alternative three-dimensional folding states of the human genome. We show that the highly compartmentalized and cell-type-specific organization described previously for non-synchronous cells is restricted to interphase. In metaphase, we identify a homogenous folding state, which is locus-independent, common to all chromosomes, and consistent among cell types, suggesting a general principle of metaphase chromosome organization. Using polymer simulations, we find that metaphase Hi-C data is inconsistent with classic hierarchical models, and is instead best described by a linearly-organized longitudinally compressed array of consecutive chromatin loops.